Радиоуглеродный метод. Радиоуглеродное датирование

РАДИОУГЛЕРОДНОЕ ДАТИРОВАНИЕ
метод датирования органических материалов путем измерения содержания радиоактивного изотопа углерода 14С. Этот метод широко применяется в археологии и науках о Земле.
См. также
ИЗОТОПЫ ;
РАДИОАКТИВНОСТЬ .
Источники радиоуглерода. Земля и ее атмосфера постоянно подвергаются радиоактивной бомбардировке потоками элементарных частиц из межзвездного пространства. Проникая в верхние слои атмосферы, частицы расщепляют находящиеся там атомы, способствуя высвобождению протонов и нейтронов, а также более крупных атомных структур. Содержащиеся в воздухе атомы азота поглощают нейтроны и высвобождают протоны. Эти атомы имеют, как и прежде, массу 14, но обладают меньшим положительным зарядом; теперь их заряд равен шести. Таким образом исходный атом азота превращается в радиоактивный изотоп углерода:

Где n, N, С и р означают соответственно нейтрон, азот, углерод и протон. Образование радиоактивных нуклидов углерода из атмосферного азота под воздействием космических лучей происходит со средней скоростью ок. 2,4 ат./с на каждый квадратный сантиметр земной поверхности. Изменения солнечной активности могут обусловить некоторые колебания этой величины. Поскольку углерод-14 радиоактивен, он нестабилен и постепенно превращается в атомы азота-14, из которых образовался; в процессе такого превращения он выделяет электрон - отрицательную частицу, что и позволяет зафиксировать сам этот процесс. Образование атомов радиоуглерода под воздействием космических лучей обычно происходит в верхних слоях атмосферы на высотах от 8 до 18 км. Подобно обычному углероду, радиоуглерод окисляется в воздухе, и при этом образуется радиоактивный диоксид (углекислый газ). Под воздействием ветра атмосфера постоянно перемешивается, и в конечном итоге радиоактивный углекислый газ, образовавшийся под воздействием космических лучей, равномерно распределяется в атмосферном углекислом газе. Однако относительное содержание радиоуглерода 14C в атмосфере остается чрезвычайно малым - ок. 1,2*10-12 г на один грамм обычного углерода 12С.
Радиоуглерод в живых организмах. Все растительные и животные ткани содержат углерод. Растения получают его из атмосферы, а поскольку животные поедают растения, в их организмы в опосредованной форме тоже попадает диоксид углерода. Таким образом, космические лучи являются источником радиоактивности всех живых организмов. Смерть лишает живую материю способности поглощать радиоуглерод. В мертвых органических тканях происходят внутренние изменения, включая и распад атомов радиоуглерода. В ходе этого процесса за 5730 лет половина исходного числа нуклидов 14C превращаются в атомы 14N. Этот интервал времени называют периодом полураспада 14С. Спустя еще один период полураспада содержание нуклидов 14С составляет всего 1/4 их исходного числа, по истечении следующего периода полураспада - 1/8 и т.д. В итоге содержание изотопа 14C в образце можно сопоставить с кривой радиоактивного распада и таким образом установить промежуток времени, истекший с момента гибели организма (его выключения из кругооборота углерода). Однако для такого определения абсолютного возраста образца необходимо допустить, что начальное содержание 14С в организмах на протяжении последних 50 000 лет (ресурс радиоуглеродного датирования) не претерпевало изменений. На самом деле образование 14С под воздействием космических лучей и его поглощение организмами несколько менялось. В результате измерение содержания изотопа 14С в образце дает лишь приблизительную дату. Чтобы учесть влияние изменений начального содержания 14С, можно использовать данные дендрохронологии о содержании 14C в древесных кольцах. Метод радиоуглеродного датирования был предложен У. Либби (1950). К 1960 датирование по радиоуглероду получило всеобщее признание, радиоуглеродные лаборатории были созданы по всему миру, а Либби был удостоен Нобелевской премии по химии.
Метод. Образец, предназначаемый для радиоуглеродного анализа, следует брать с помощью абсолютно чистых инструментов и хранить в сухом виде в стерильном полиэтиленовом пакете. Необходима точная информация о месте и условиях отбора. Идеальный образец древесины, древесного угля или ткани должен весить примерно 30 г. Для раковин желательна масса 50 г, а для костей - 500 г (новейшие методики позволяют, впрочем, определять возраст и по гораздо меньшим навескам). Каждый образец необходимо тщательно очистить от более древних и более молодых углеродсодержащих загрязнений, например, от корней выросших позже растений или от обломков древних карбонатных пород. За предварительной очисткой образца следует его химическая обработка в лаборатории. Для удаления инородных углеродсодержащих минералов и растворимых органических веществ, которые могли проникнуть внутрь образца, используют кислотный или щелочной раствор. После этого органические образцы сжигают, раковины растворяют в кислоте. Обе эти процедуры приводят к выделению газообразного диоксида углерода. В нем содержится весь углерод очищенного образца, и его иногда превращают в другое вещество, пригодное для радиоуглеродного анализа. Существует несколько методов измерения активности радиоуглерода. Один из них основан на определении количества электронов, выделяющихся в процессе распада 14С. Интенсивность их выделения соответствует количеству 14С в исследуемом образце. Время счета составляет до нескольких суток, поскольку за сутки происходит распад всего лишь примерно четверти миллионной доли содержащегося в образце количества атомов 14С. Другой метод требует использования масс-спектрометра, с помощью которого выявляются все атомы с массой 14; особый фильтр позволяет различать 14N и 14С. Поскольку при этом нет необходимости ждать, пока произойдет распад, счет 14С можно осуществить меньше, чем за час; достаточно иметь образец массой в 1 мг. Прямой масс-спектрометрический метод называют АМС-датировкой. При этом используются сложные высокочувствительные приборы, которыми располагают, как правило, центры, ведущие исследования в области ядерной физики
(см. также СПЕКТРОСКОПИЯ ; УСКОРИТЕЛЬ ЧАСТИЦ).
Традиционный метод требует гораздо менее громоздкого оборудования. Сначала применяли счетчик, определяющий состав газа и по принципу работы сходный со счетчиком Гейгера. Счетчик наполняли углекислым или иным газом (метаном либо ацетиленом), полученным из образца. Любой радиоактивный распад, происходящий внутри прибора, вызывает слабый электрический импульс. Энергия радиационного фона окружающей среды обычно колеблется в широких пределах, в отличие от радиации, вызванной распадом 14С, энергия которого, как правило, близка к нижней границе фонового спектра. Весьма нежелательное соотношение фоновых величин и данных по 14С можно улучшить путем изоляции счетчика от внешней радиации. С этой целью счетчик закрывают экранами из железа или высокочистого свинца толщиной в несколько сантиметров. Кроме того, стенки самого счетчика экранируют расположенными вплотную один к другому счетчиками Гейгера, которые, задерживая все космическое излучение, примерно на 0,0001 секунды дезактивируют и сам счетчик, содержащий образец. Метод экранирования сводит фоновый сигнал до нескольких распадов в минуту (образец древесины массой 3 г, относящийся к 18 в., дает РАДИОУГЛЕРОДНОЕ ДАТИРОВАНИЕ40 случаев распада 14С в минуту), что позволяет датировать довольно древние образцы. Примерно с 1965 широкое распространение в датировании получил метод жидкостной сцинтилляции. При его использовании полученный из образца углеродсодержащий газ превращают в жидкость, которую можно хранить и исследовать в небольшом стеклянном сосуде. В жидкость добавляют специальное вещество - сцинтиллятор, - которое заряжается энергией электронов, высвобождающихся при распаде радионуклидов 14С. Сцинтиллятор почти сразу испускает накопленную энергию в виде вспышек световых волн. Свет можно улавливать с помощью фотоумножительной трубки. В сцинтилляционном счетчике имеются две такие трубки. Ложный сигнал можно выявить и исключить, поскольку он послан лишь одной трубкой. Современные сцинтилляционные счетчики характеризуются очень низким, почти нулевым, фоновым излучением, что позволяет датировать с высокой точностью образцы возрастом до 50 000 лет. Сцинтилляционный метод требует тщательной подготовки образцов, поскольку углерод должен быть превращен в бензол. Процесс начинается с реакции между диоксидом углерода и расплавленным литием, в результате которой образуется карбид лития. В карбид понемногу добавляют воду, и он растворяется, выделяя ацетилен. Этот газ, содержащий весь углерод образца, под действием катализатора превращается в прозрачную жидкость - бензол. Следующая цепочка химических формул показывает, как углерод в этом процессе переходит из одного соединения в другое:


Все определения возраста, полученные на основе лабораторного измерения содержания 14С, называют радиоуглеродными датами. Они приводятся в количестве лет до наших дней (ВР), а за момент отсчета принимается круглая современная дата (1950 или 2000). Радиоуглеродные даты всегда приводят с указанием возможной статистической ошибки (например, 1760 ± 40 до ВР).
Применение. Обычно для установления возраста события применяют несколько методов, особенно если речь идет о сравнительно недавнем событии. Возраст крупного, хорошо сохранившегося образца может быть установлен с точностью до десяти лет, но для неоднократного анализа образца требуется несколько суток. Обычно результат получают с точностью 1% от определяемого возраста. Значение радиоуглеродного датирования особенно возрастает в случае отсутствия каких-либо исторических данных. В Европе, Африке и Азии ранние следы первобытного человека выходят за пределы времени, поддающегося радиоуглеродному датированию, т.е. оказываются старше 50 000 лет. Однако в рамки радиоуглеродного датирования попадают начальные этапы организации общества и первые постоянные поселения, а также возникновение древнейших городов и государств. Радиоуглеродное датирование оказалось особенно успешным при разработке хронологической шкалы многих древних культур. Благодаря этому теперь возможно сравнивать ход развития культур и общества и устанавливать, какие группы людей первыми освоили те или иные орудия труда, создали новый тип поселений либо проложили новый торговый путь. Определение возраста по радиоуглероду приобрело универсальный характер. После образования в верхних слоях атмосферы радионуклиды 14С проникают в разные среды. Воздушные потоки и турбулентность в нижних слоях атмосферы обеспечивают глобальное распространение радиоуглерода. Проходя в воздушных потоках над океаном, 14С попадает сначала в поверхностный слой воды, а затем проникает и в глубинные слои. Над материками дождь и снег приносят 14С на земную поверхность, где он постепенно накапливается в реках и озерах, а также в ледниках, где может сохраняться на протяжении тысячелетий. Изучение концентрации радиоуглерода в этих средах пополняет наши знания о кругообороте воды в Мировом океане и о климате прошлых эпох, включая последний ледниковый период. Радиоуглеродный анализ остатков деревьев, поваленных наступавшим ледником, показал, что самый последний холодный период на Земле завершился примерно 11 000 лет назад. Растения ежегодно усваивают диоксид углерода из атмосферы в период вегетации, и изотопы 12С, 13С и 14С присутствуют в клетках растений примерно в той же пропорции, в какой они представлены в атмосфере. Атомы 12С и 13С содержатся в атмосфере в почти постоянной пропорции, но количество изотопа 14С колеблется в зависимости от интенсивности его образования. Слои годового прироста, называемые древесными кольцами, отражают эти различия. Непрерывная последовательность годовых колец одного дерева может охватывать 500 лет у дуба и более 2000 лет у секвойи и остистой сосны. В аридных горных районах на северо-западе США и в торфяных болотах Ирландии и Германии были обнаружены горизонты со стволами мертвых деревьев разных возрастов. Эти находки позволяют объединить сведения о колебаниях концентрации 14С в атмосфере на протяжении почти 10 000 лет. Правильность определения возраста образцов в ходе лабораторных исследований зависит от знания концентрации 14С во время жизни организма. Для последних 10 000 лет такие данные собраны и обычно представляются в виде калибровочной кривой, показывающей разницу между уровнем атмосферного 14С в 1950 и в прошлом. Расхождение между радиоуглеродной и калиброванной датами не превышает ±150 лет для интервала между 1950 н.э. и 500 до н.э. Для более древних времен это расхождение увеличивается и при радиоуглеродном возрасте в 6000 лет достигает 800 лет.
См. также
АРХЕОЛОГИЯ ;
УГЛЕРОД .



ЛИТЕРАТУРА
Либби В.Ф. Определение возраста по радиоуглероду. - В сб.: Изотопы в геологии. М., 1954 Ранкама К. Изотопы в геологии. М., 1956 Серебрянный Л.Р. Радиоуглеродный метод и его применение для изучения палеографии четвертичного периода. М., 1961 Старик И.Е. Ядерная геохронология. Л., 1961 Серебрянный Л.Р. Применение радиоуглеродного метода в четвертичной геологии. М., 1965 Ильвес Э.О., Лийва А.А., Пуннинг Я.-М.К. Радиоуглеродный метод и его применение в четвертичной геологии и археологии. Таллин, 1977 Арсланов Х.А. Радиоуглерод: геохимия и геохронология. Л., 1987

Энциклопедия Кольера. - Открытое общество . 2000 .

Многие ссылаются на результаты радиоуглеродного датирования, но не всякий знает суть и применимость этого метода. К тому же существуют и «подводные камни», внимание на которые нужно непременно обратить. В подборке материалов читателей ждёт знакомство с беглым обзором радиоуглеродного метода, а также мнения «за» и «против».

Радиоуглеродное датирование - метод датирования органических материалов путем измерения содержания радиоактивного изотопа углерода 14С. Этот метод широко применяется в археологии и науках о Земле.

Источники радиоуглерода

Земля и ее атмосфера постоянно подвергаются радиоактивной бомбардировке потоками элементарных частиц из межзвездного пространства. Проникая в верхние слои атмосферы, частицы расщепляют находящиеся там атомы, способствуя высвобождению протонов и нейтронов, а также более крупных атомных структур. Содержащиеся в воздухе атомы азота поглощают нейтроны и высвобождают протоны. Эти атомы имеют, как и прежде, массу 14, но обладают меньшим положительным зарядом; теперь их заряд равен шести. Таким образом исходный атом азота превращается в радиоактивный изотоп углерода:

где n, N, С и р означают соответственно нейтрон, азот, углерод и протон.

Образование радиоактивных нуклидов углерода из атмосферного азота под воздействием космических лучей происходит со средней скоростью ок. 2,4 ат./с на каждый квадратный сантиметр земной поверхности. Изменения солнечной активности могут обусловить некоторые колебания этой величины. Поскольку углерод-14 радиоактивен, он нестабилен и постепенно превращается в атомы азота-14, из которых образовался; в процессе такого превращения он выделяет электрон – отрицательную частицу, что и позволяет зафиксировать сам этот процесс.

Образование атомов радиоуглерода под воздействием космических лучей обычно происходит в верхних слоях атмосферы на высотах от 8 до 18 км. Подобно обычному углероду, радиоуглерод окисляется в воздухе, и при этом образуется радиоактивный диоксид (углекислый газ). Под воздействием ветра атмосфера постоянно перемешивается, и в конечном итоге радиоактивный углекислый газ, образовавшийся под воздействием космических лучей, равномерно распределяется в атмосферном углекислом газе. Однако относительное содержание радиоуглерода 14C в атмосфере остается чрезвычайно малым – ок. 1,2*10–12 г на один грамм обычного углерода 12С.

Радиоуглерод в живых организмах

Все растительные и животные ткани содержат углерод. Растения получают его из атмосферы, а поскольку животные поедают растения, в их организмы в опосредованной форме тоже попадает диоксид углерода. Таким образом, космические лучи являются источником радиоактивности всех живых организмов.

Смерть лишает живую материю способности поглощать радиоуглерод. В мертвых органических тканях происходят внутренние изменения, включая и распад атомов радиоуглерода. В ходе этого процесса за 5730 лет половина исходного числа нуклидов 14C превращаются в атомы 14N. Этот интервал времени называют периодом полураспада 14С. Спустя еще один период полураспада содержание нуклидов 14С составляет всего 1/4 их исходного числа, по истечении следующего периода полураспада – 1/8 и т.д. В итоге содержание изотопа 14C в образце можно сопоставить с кривой радиоактивного распада и таким образом установить промежуток времени, истекший с момента гибели организма (его выключения из кругооборота углерода). Однако для такого определения абсолютного возраста образца необходимо допустить, что начальное содержание 14С в организмах на протяжении последних 50 000 лет (ресурс радиоуглеродного датирования) не претерпевало изменений. На самом деле образование 14С под воздействием космических лучей и его поглощение организмами несколько менялось. В результате измерение содержания изотопа 14С в образце дает лишь приблизительную дату. Чтобы учесть влияние изменений начального содержания 14С, можно использовать данные дендрохронологии о содержании 14C в древесных кольцах.

Метод радиоуглеродного датирования был предложен У.Либби (1950). К 1960 датирование по радиоуглероду получило всеобщее признание, радиоуглеродные лаборатории были созданы по всему миру, а Либби был удостоен Нобелевской премии по химии.

Метод

Образец, предназначаемый для радиоуглеродного анализа, следует брать с помощью абсолютно чистых инструментов и хранить в сухом виде в стерильном полиэтиленовом пакете. Необходима точная информация о месте и условиях отбора. Идеальный образец древесины, древесного угля или ткани должен весить примерно 30 г. Для раковин желательна масса 50 г, а для костей – 500 г (новейшие методики позволяют, впрочем, определять возраст и по гораздо меньшим навескам). Каждый образец необходимо тщательно очистить от более древних и более молодых углеродсодержащих загрязнений, например, от корней выросших позже растений или от обломков древних карбонатных пород. За предварительной очисткой образца следует его химическая обработка в лаборатории. Для удаления инородных углеродсодержащих минералов и растворимых органических веществ, которые могли проникнуть внутрь образца, используют кислотный или щелочной раствор. После этого органические образцы сжигают, раковины растворяют в кислоте. Обе эти процедуры приводят к выделению газообразного диоксида углерода. В нем содержится весь углерод очищенного образца, и его иногда превращают в другое вещество, пригодное для радиоуглеродного анализа.

Существует несколько методов измерения активности радиоуглерода. Один из них основан на определении количества электронов, выделяющихся в процессе распада 14С. Интенсивность их выделения соответствует количеству 14С в исследуемом образце. Время счета составляет до нескольких суток, поскольку за сутки происходит распад всего лишь примерно четверти миллионной доли содержащегося в образце количества атомов 14С. Другой метод требует использования масс-спектрометра, с помощью которого выявляются все атомы с массой 14; особый фильтр позволяет различать 14N и 14С. Поскольку при этом нет необходимости ждать, пока произойдет распад, счет 14С можно осуществить меньше, чем за час; достаточно иметь образец массой в 1 мг. Прямой масс-спектрометрический метод называют АМС-датировкой. При этом используются сложные высокочувствительные приборы, которыми располагают, как правило, центры, ведущие исследования в области ядерной физики.

Традиционный метод требует гораздо менее громоздкого оборудования. Сначала применяли счетчик, определяющий состав газа и по принципу работы сходный со счетчиком Гейгера. Счетчик наполняли углекислым или иным газом (метаном либо ацетиленом), полученным из образца. Любой радиоактивный распад, происходящий внутри прибора, вызывает слабый электрический импульс. Энергия радиационного фона окружающей среды обычно колеблется в широких пределах, в отличие от радиации, вызванной распадом 14С, энергия которого, как правило, близка к нижней границе фонового спектра. Весьма нежелательное соотношение фоновых величин и данных по 14С можно улучшить путем изоляции счетчика от внешней радиации. С этой целью счетчик закрывают экранами из железа или высокочистого свинца толщиной в несколько сантиметров. Кроме того, стенки самого счетчика экранируют расположенными вплотную один к другому счетчиками Гейгера, которые, задерживая все космическое излучение, примерно на 0,0001 секунды дезактивируют и сам счетчик, содержащий образец. Метод экранирования сводит фоновый сигнал до нескольких распадов в минуту (образец древесины массой 3 г, относящийся к 18 в., дает ~40 случаев распада 14С в минуту), что позволяет датировать довольно древние образцы.

Примерно с 1965 широкое распространение в датировании получил метод жидкостной сцинтилляции. При его использовании полученный из образца углеродсодержащий газ превращают в жидкость, которую можно хранить и исследовать в небольшом стеклянном сосуде. В жидкость добавляют специальное вещество – сцинтиллятор, – которое заряжается энергией электронов, высвобождающихся при распаде радионуклидов 14С. Сцинтиллятор почти сразу испускает накопленную энергию в виде вспышек световых волн. Свет можно улавливать с помощью фотоумножительной трубки. В сцинтилляционном счетчике имеются две такие трубки. Ложный сигнал можно выявить и исключить, поскольку он послан лишь одной трубкой. Современные сцинтилляционные счетчики характеризуются очень низким, почти нулевым, фоновым излучением, что позволяет датировать с высокой точностью образцы возрастом до 50 000 лет.

Сцинтилляционный метод требует тщательной подготовки образцов, поскольку углерод должен быть превращен в бензол. Процесс начинается с реакции между диоксидом углерода и расплавленным литием, в результате которой образуется карбид лития. В карбид понемногу добавляют воду, и он растворяется, выделяя ацетилен. Этот газ, содержащий весь углерод образца, под действием катализатора превращается в прозрачную жидкость – бензол. Следующая цепочка химических формул показывает, как углерод в этом процессе переходит из одного соединения в другое:

Все определения возраста, полученные на основе лабораторного измерения содержания 14С, называют радиоуглеродными датами. Они приводятся в количестве лет до наших дней (ВР), а за момент отсчета принимается круглая современная дата (1950 или 2000). Радиоуглеродные даты всегда приводят с указанием возможной статистической ошибки (например, 1760 ± 40 до ВР).

Применение

Обычно для установления возраста события применяют несколько методов, особенно если речь идет о сравнительно недавнем событии. Возраст крупного, хорошо сохранившегося образца может быть установлен с точностью до десяти лет, но для неоднократного анализа образца требуется несколько суток. Обычно результат получают с точностью 1% от определяемого возраста.

Значение радиоуглеродного датирования особенно возрастает в случае отсутствия каких-либо исторических данных. В Европе, Африке и Азии ранние следы первобытного человека выходят за пределы времени, поддающегося радиоуглеродному датированию, т.е. оказываются старше 50 000 лет. Однако в рамки радиоуглеродного датирования попадают начальные этапы организации общества и первые постоянные поселения, а также возникновение древнейших городов и государств.

Радиоуглеродное датирование оказалось особенно успешным при разработке хронологической шкалы многих древних культур. Благодаря этому теперь возможно сравнивать ход развития культур и общества и устанавливать, какие группы людей первыми освоили те или иные орудия труда, создали новый тип поселений либо проложили новый торговый путь.

Определение возраста по радиоуглероду приобрело универсальный характер. После образования в верхних слоях атмосферы радионуклиды 14С проникают в разные среды. Воздушные потоки и турбулентность в нижних слоях атмосферы обеспечивают глобальное распространение радиоуглерода. Проходя в воздушных потоках над океаном, 14С попадает сначала в поверхностный слой воды, а затем проникает и в глубинные слои. Над материками дождь и снег приносят 14С на земную поверхность, где он постепенно накапливается в реках и озерах, а также в ледниках, где может сохраняться на протяжении тысячелетий. Изучение концентрации радиоуглерода в этих средах пополняет наши знания о кругообороте воды в Мировом океане и о климате прошлых эпох, включая последний ледниковый период. Радиоуглеродный анализ остатков деревьев, поваленных наступавшим ледником, показал, что самый последний холодный период на Земле завершился примерно 11 000 лет назад.

Растения ежегодно усваивают диоксид углерода из атмосферы в период вегетации, и изотопы 12С, 13С и 14С присутствуют в клетках растений примерно в той же пропорции, в какой они представлены в атмосфере. Атомы 12С и 13С содержатся в атмосфере в почти постоянной пропорции, но количество изотопа 14С колеблется в зависимости от интенсивности его образования. Слои годового прироста, называемые древесными кольцами, отражают эти различия. Непрерывная последовательность годовых колец одного дерева может охватывать 500 лет у дуба и более 2000 лет у секвойи и остистой сосны. В аридных горных районах на северо-западе США и в торфяных болотах Ирландии и Германии были обнаружены горизонты со стволами мертвых деревьев разных возрастов. Эти находки позволяют объединить сведения о колебаниях концентрации 14С в атмосфере на протяжении почти 10 000 лет. Правильность определения возраста образцов в ходе лабораторных исследований зависит от знания концентрации 14С во время жизни организма. Для последних 10 000 лет такие данные собраны и обычно представляются в виде калибровочной кривой, показывающей разницу между уровнем атмосферного 14С в 1950 и в прошлом. Расхождение между радиоуглеродной и калиброванной датами не превышает ± 150 лет для интервала между 1950 н.э. и 500 до н.э. Для более древних времен это расхождение увеличивается и при радиоуглеродном возрасте в 6000 лет достигает 800 лет.

Литература:
Либби В.Ф. Определение возраста по радиоуглероду. – В сб.: Изотопы в геологии. М., 1954
Ранкама К. Изотопы в геологии. М., 1956
Серебрянный Л.Р. Радиоуглеродный метод и его применение для изучения палеографии четвертичного периода. М., 1961
Старик И.Е. Ядерная геохронология. Л., 1961
Серебрянный Л.Р. Применение радиоуглеродного метода в четвертичной геологии. М., 1965
Ильвес Э.О., Лийва А.А., Пуннинг Я.-М.К. Радиоуглеродный метод и его применение в четвертичной геологии и археологии. Таллин, 1977
Арсланов Х.А. Радиоуглерод: геохимия и геохронология. Л., 1987

В последнее время на Городе развернулось множество споров, касающихся таких тем, как альтернативная история, хронология, креационизм и теория эволюции. В ходе споров постоянно всплывает тема "достоверны ли научные/общепринятые доказательства возраста того или иного артефакта, явления, события и т.п".

Поэтому предлагаю вниманию описание радиоуглеродного метода датирования, как одного из самых распространённых для определения возраста артефактов.

Радиоуглеродный метод датирования - это радиометрический метод, использующий естественное содержание изотопа углерода-14 (14 С) для определения возраста углеродсодержащих материалов. Диапазон применения - до 50 000 лет.

Необработанные данные о возрасте, т.е. данные, не подвергшиеся калибровке, обычно называют радиоуглеродными годами "до настоящего времени". В качестве нулевого отсчёта, т.е. "настоящего времени", принято считать 1950 год н.э.

Радиоуглеродный метод датирования был изобретён Виллардом Либби (Willard Libby), профессором Чикогского университета и его коллегами в 1949 году. В 1960 году он получил Нобелевскую премию по химии за своё изобретение.

Суть метода заключается в том, что стабильный изотоп азота (14 N) в атмосфере подвергается действию космических лучей, превращающих его в изотоп углерода 14 C, который имеет период полураспада 5730±40 лет. Живые организмы в процессе жизнедеятельности усваивают атмосферный углерод, накапливая в свох тканях некоторое количество 14 C, который, затем, постепенно распадается (предполагается, что после гибели организма новых поступлений 14 C в ткани нет). Исследователю достаточно знать, сколько в среднем 14 C данный вид организмов накапливает за свою жизнь, и определить, сколько его осталось в тканях - на основании этих данных расчитывается возраст в радиоуглеродных годах.

Одной из первых демонстраций работоспособности и точности метода было измерение возраста древесины из захоронения древнеегипетского фараона, чей возраст был заранее известен из исторических документов.

Физика процесса

Углерод имеет 2 стабильных изотопа - 12 C (98,89%) и 13 С (1,11%). Кроме того, на Земле имеются следовые количества нестабильного изотопа 14 С (0,0000000001%). Данный изотоп имеет период полураспада около 5730 лет, и, таким образом, должен был давно исчезнуть с лица Земли. Однако постоянные потоки космических лучей, бомбардирующих атмосферу Земли, обновляют этот запас. Нейтроны, возникающие при бомбардировке космическими лучами атмосферы, вступают в ядерную реакцию с ядрами атомов азота:

n + 14 7 N → 14 6 C + p

Наибольшее количество 14 С наблюдается в атмосфере на высотах 9 — 15 км и в высоких широтах, откуда он распространяется по всей атмосфере и растворяется в океанах. Для приблизительного анализа считается, что "наработка" 14 С происходит примерно с постоянной скоростью, и содержание 14 С в атмосфере примерно постоянна (600 млрд. атомов 14 С на моль).

Полученный углерод быстро окисляется до 14 СО 2 и в дальнейшем усваивается растениями и микроорганизмами, поступая в дальнейшем в пищевую цепь других организмов. Таким образом, каждый живой организм постоянно получает определённое количество 14 С в течение всей жизни. Как только он погибает, такой обмен прекращается, и накопленный 14 С постепенно распадается в реакции бета-распада:

14 6 C → 14 7 N + e - +v e

Испуская электрон и антинейтрино, 14 С превращается в стабильный азот.

В 1958 году Хессел де Врайс (Hessel de Vries) доказал, что концентрация 14 С в атмосфере может сильно изменяться как в разное время, так и в разных местах. Для более точных измерений эти изменения учитываются в виде калибровочных кривых. На приведённом рисунке приводится динамика изменения концентрации 14 СО2 в атмосфере над Австралией и Новой Зеландией — значительный всплеск обусловлен многочисленными применениями ядерного оружия в атмосфере.

Кроме того, известно, что морские организмы могут получать углерод из растворённых в воде карбонатов, возраст которых может быть весьма значительным — в силу этого в них может наблюдаться "дефицит" изотопа 14 С, что делает радиоуглеродный метод гораздо менее надёжным для данного вида материалов.

Вычисление возраста

Распад 14 С подчиняется экпоненциальному закону. Другими словами, количество атомов, подвергающихся распаду за определённый период, зависит от исходного количества атомов в начале этого периода. Количество оставшихся атомов С после того, как пройдёт время t , будет выражаться формулой:

С = С 0 е -t / T

где С 0 - исходное количество атомов, T — среднее время распада = t 1/2 (время полураспада) * ln2 , e — основание натурального логарифма.

Таким образом, радиоуглеродный возраст t РВ (без поправки на флуктуации количества 14 С) будет выражаться формулой:

t РВ = -t 1/2 * log 2 (C / C 0 )

Измерения и шкалы

Традиционные методы подсчёта оставшегося в образцах материала 14 С основаны на подсчёте количества всё ещё распадающихся атомов (методы газовой и жидкостной сцинтилляции, основанные на прямом подсчёте "вспышек", порождаемых распадами отдельных атомов 14 C в специальных сцинтилляционных камерах, оборудованных датчиками), но они малочувствительны и могут приводить к большим погрешностям при исследовании малых образцов (менее 1 грамма углерода). Так, например, в образце возраста 10 000 лет среднее число распадов будет 4 атома/секунду в одном моле углерода (примерно 30-40 грамм для древесины), что либо слишком мало для получения надёжной статистики, либо требует слишком большого времени (что также может привести к накоплению ошибки за счёт посторонних сцинтилляций) .

Когда различные авторы апеллируют к весьма ненадёжной и недостоверной информации, получаемой радиоуглеродным методом, прежде всего имеются ввиду традиционные методы подсчёта сцинтилляций.

Изотопная масс-спектрометрия
в последние годы стала основным инструментом для проведения радиоуглеродного датирования. Данный метод основывается на том, что атомы разных изотопов (и веществ, сосоящих из них) имеют разную массу. Образцы вещества окисляются до образования углекислого газа (остальные оксиды удаляются), затем полученный газ ионизируется и на высокой скорости проходит через магнитную камеру, где заряженные молекулы отклоняются от исходной траектории. Чем больше отклонение - тем легче молекула, и тем меньше в ней 14 С. Подсчитав соотношение слабо отклонившихся и сильно отклонившихся молекул, можно определить, какова концентрация 14 С в образце с высокой точностью. Этот метод позволяет датировать образцы с массой всего несколько миллиграммов в диапазоне до 60 000 лет (данные 2005 года).

В настоящее время большинство лабораторий даёт статистическую погрешность ±30 лет в диапазоне возрастов до 3000 лет, на более длинные периоды эта погрешность возрастает (до 500 лет для возрастов порядка 50 000 лет). Обратите внимание, что речь идёт о радиоуглеродном возрасте, а не об абсолютном возрасте образца!

Калибровка

Как было неоднократно сказано, данный метод существенным образом зависит от предположения, что содержание 14 С в атмосфере примерно постоянно. Однако на практике это не так. Уровень 14 С зависит от многих факторов. В первую очередь, от интенсивности космического излучения, которая изменяется в зависимости от изменений магнитного поля Земли, на которое, в свою очередь, действуют вспышки на Солнце. Кроме того, баланс 14 C может нарушаться вследствие крупных выбросов в атмосферу углерода из океана (газовый конденсат), вулканической и иной деятельности. Изменения климата и деятельность человечества также могут нарушать данный баланс.

Основными способами калибровки метода, то есть расчёта баланса 14 С в требуемый период, являются сравнения результатов радиоуглеродного метода с другими независимыми методами — дендрохронологией, исследованиями кернов древнего льда, донных отложений, образцов древних кораллов, пещерных отложений и натёков.


На графике калибровки представлена зависимость радиоуглеродного возраста образцов от их возраста, расчитанного по совокупности других методик. Современная (по данным 2004 года) точность калибровки составляет ±16 лет для возрастов до 6 000 лет и не более ±160 лет для возрастов до 26 000 лет.

Таким образом, современный радиоуглеродный метод датирования является достаточно точным для приблизительной оценки возраста образцов, особенно в исторический период развития цивилизации (4000 лет до н.э.) Однако многочисленные ошибки отсутствия или неверной калибровки , устаревшие методы подсчёта количества изотопа 14 С, и, как следствие, имевшие место "подгонки под ответ" дали богатую почву для сомнений в правомерности датирования этим методом .

Однако сейчас (опять же, с известной оговоркой) этот метод можно признать надёжным , тем более, что в мире имеется около 130 независимых лабораторий, выполняющих данное исследование, и постоянно ведутся работы по улучшению калибровки.

Литература

  1. Arnold, J. R. and Libby, W. F. (1949) Age Determinations by Radiocarbon Content: Checks with Samples of Known Age , Science 110, 678-680.
  2. Libby, W.F. Radiocarbon dating , 2nd Edition, Chicago, University of Chicago Press, 1955.
  3. C. Crowe, Carbon-14 activity during the past 5000 years , Nature , 182, (1958): 470 + опровержения в том же номере: а) K. O. Münnich, H. G. Östlund, and H. de Vries, Nature , 182, (1958): 1432 и б) H. Barker, Nature , 182, (1958): 1433 - в обеих даются доказательства широких изменений уровня 14 С и, соответственно, приводятся расчёты, дающие гораздо меньшие возраста для образцов, представленных C. Crowe.
  4. de Vries, H. L. (1958). Variation in Concentration of Radiocarbon with Time and Location on Earth, Proceedings Koninlijke Nederlandse Akademie Wetenschappen B, 61: 94-102; and in Researches in Geochemistry, P. H. Abelson (Ed.) (1959) Wiley, New York, p. 180
  5. Aitken, M. J. Physics and Archaeology , New York, Interscience Publishers, 1961.
  6. Libby, W.F. Radiocarbon; an Atomic Clock , Annual Science and Humanity journal, 1962.
  7. Kovar, A. J. (1966)

Радиоуглеродный (РУ) метод датирования был изобретён американским химиком Уилардом Либби в 1946 году, в 1960 году Либби стал Нобелевским лауреатом по химии за обоснование этого метода и его применение. РУ-метод заключается в измерении процентного содержания радиоактивного изотопа углерода С14 в органике и расчётах возраста органики на этом основании. Изначально идея Либби опиралась на следующие

гипотезы:

1. С14 образуется в верхних слоях атмосферы под действием космических лучей, затем перемешивается в атмосфере, входя в состав углекислого газа. Предполагалось, что процентное содержание С14 в атмосфере является постоянным и не зависит от времени и места, несмотря на неоднородность самой атмосферы и распад изотопов.
2. Скорость радиоактивного распада является постоянной величиной, измеряемой периодом полураспада в 5568 лет (предполагается, что за это время половина изотопов С14 превращается в С12).
3. Животные и растительные организмы строят свои тела из углекислоты, добываемой из атмосферы, и при этом живые клетки содержат тот же процент изотопа С14, что находится в атмосфере.
4. По смерти организма, его клетки выходят из цикла углеродного обмена, поэтому изотопы углерода С14 по экспоненциальному закону радиоактивного распада превращаются в стабильный изотоп С12. Что и позволяет расчитать время, прошедшее со времени смерти организма. Это время называется «радиоуглеродным возрастом».

У этой теории, по мере накопления материала, стали появляться контрпримеры: недавно умершие организмы внезапно получались очень древними, или напротив - могли содержали столь огромное количество изотопа, что получали отрицательный РУ-возраст. Некоторые заведомо древние предметы имели молодой РУ-возраст (такие артефакты объявлялись поздними подделками). В итоге оказалось, что РУ-возраст далеко не всегда совпадает с истинным возрастом, в том случае, когда истинный возраст можно проверить. Но РУ-метод применяется в основном для датирования органических предметов неизвестного возраста, тем самым эти даты могут и не иметь независимой проверки. Получаемые парадоксы можно объяснить следующими недостатками теории Либби (эти и иные факторы проанализированы в книге М.М. Постникова «Критическое исследование хронологии древнего мира, в 3-х томах»,- М.: Крафт+Леан, 2000, в томе 1, стр. 311-318, написанной в 1978 году):

1) Непостоянство, неравномерность процентного содержания С14 в атмосфере, его неоднородное распределение. Содержание С14 зависит от космического фактора (интенсивность солнечного излучения) и земного (поступление в атмосферу «старого» углерода из-за горения или гниения древней органики, возникновения новых источников радиоактивности, колебаний магнитного поля Земли). Изменение этого параметра на 20% влечёт ошибку в РУ-возрасте почти в 2 тысячи лет.
2) Скорость радиоактивного распада изотопов не является постоянной, - действительно, со времён Либби период полураспада С14 по официальным справочникам «изменился» на сотню лет, то есть,- на пару процентов (этому соответствует изменение РУ-возраста на полторы сотни лет). По всей видимости, значение этого периода значительно (в пределах нескольких процентов) зависит от экспериментов, в которых он определяется. А, возможно, зависит от каких-то внешних условий, полей и сил.
3) Изотопы углерода не являются вполне химически эквивалентными, и поэтому клеточные мембраны могут использовать их избирательно: некоторые абсорбировать С14, некоторые - наоборот, избегать его. Поскольку процентное содержание С14 ничтожно (один атом С14 к 10 миллиардам атомов С12), даже незначительная избирательность клетки в изотопном отношении повлечёт большое изменение РУ-возраста (колебание на 10% приводит к ошибке примерно 600 лет).
4) По смерти организма, его ткани не выходят из углеродного обмена, участвуя в процессах гниения и диффузии.

Со времени Либби физики-радиоуглеродчики научились очень точно определять содержание изотопа в образце, заявляют даже, что они способны пересчитать отдельные атомы изотопа. Разумеется, такой подсчёт возможен только для небольшого образца органической ткани, но в этом случае возникает вопрос - насколько точно этот небольшой образец представляет весь предмет? Насколько однородно содержание изотопа в нём? Ведь ошибки в несколько процентов приводят с столетним изменениям РУ-возраста.


Калибровочная шкала С14.

Признав существенное непостоянство содержание С14 в атмосфере, физики-радиоуглеродчики примерно с 70-х годов стали строить, т.н. «калибровочные шкалы» изотопа С14: по распределению изотопа в кольцах долгоживущих деревьев (американских секвой тысячелетнего возраста) было экстраполировано содержание изотопа в атмосфере за последние несколько тысяч лет. Такая шкала имеет определённый смысл для того региона, где она составлялась, но перенос её в другие регионы, на другие континенты является малообоснованным, и, скорее всего, ошибочным.
Попытки построения аналогичных шкал по короткоживущим деревьям Европы порождает иную проблему: РУ-шкала оказывается привязанной к дендрошкале региона, составленной, как указано выше, ещё менее надёжно. В итоге получается, что РУ-шкалу привязывают к произвольной и ошибочной дендрошкале, а последнюю обосновывают ссылкой на согласие с РУ-шкалой: и слепой ведёт слепого. Такого рода аргументы любят повторять российские археологи из школы Колчина.
Калибровочная шкала С14 испытывает значительную вариацию своих значений. Это привело к тому, что теперь для определения РУ-возраста радиоуглеродчикам необходимо знать интервал поиска необходимой даты, поскольку нужные значения содержания изотопа теперь могут располагаться во всех исторических тысячелетиях. Этот интервал берётся из априорных указаний традиционных историков: историки указывают подозрительный век - радиоуглеродчики выдают историкам «точную» дату, в других веках даты были бы иными. Процесс получения иных датировок на том же материале проиллюстрировал А.М. Тюрин <2>.

Все эти новшества РУ-метода пытаются снять влияние фактора 1), из предыдущих, а прочие - учёту не поддаются. В итоге, получается так, что радиоуглеродные датировки являются не более надёжными или научными, чем датировка «на глазок», по «стилю эпохи», но они используются для создания впечатления о научности традиционной хронологии, созданной средневековыми астрологами и богословами. Иной раз от историков приходится слышать даже заявления о том, что РУ-методом датированы античные монеты! Но даже если бы эти монеты были чугунными и содержали бы достаточное количество углерода, то РУ-датирование должно было бы показать не время изготовления монеты, а возраст руды (многие сотни тысяч лет). Следует думать, что многие ссылки на РУ-датирование являются таким же обманом научного мира.

Литература
1. Постников М.М. «Критическое исследование хронологии древнего мира, в 3-х томах, 1978 года»,- М.: Крафт+Леан, 2000, том 1, стр. 311-318.
2. Статьи А.М. Тюрина в Альманахе НХ №3:

Понятно, чтобы объявить тот или иной артефакт достоянием какой-то працивилизации, необходимо установить его возраст, определив точную дату создания предмета. Однако современные археологи и историки способны это сделать лишь в очень редких случаях. Подавляющее большинство археологических находок датируются приблизительно.

Радиоуглеродный метод датировки в археологи
Для датировки найденных предметов применяются несколько методов, но, к сожалению, каждый из них не свободен от недостатков, особенно применительно к поискам следов прадревних культур.

Радиоуглеродный метод:

  1. - Образование радиоуглерода 14С
  2. - Распад 14С
  3. - Условие равновесия для живых организмов и неравновесие для умерших организмов, в которых радиоуглерод распадается без пополнения извне

радиоуглеродный метод датировки

В настоящее время наиболее известным и часто применяемым является радиоуглеродный метод, который работает с радиоактивным изотопом углерода С14. Этот метод разработал в 1947 г. американский физикохимик, лауреат Нобелевской премии У.Ф. Либби. Суть метода заключается в том, что радиоактивный изотоп углерода С14 образуется в атмосфере под действием космического излучения. Вместе с обычным углеродом С12 он находится в органической ткани всего живого. Когда организм умирает, обмен его углерода с атмосферой прекращается, количество С14 уменьшается при разложении и не восстанавливается. Определение соотношения С14/С12 в образцах при известной и постоянной скорости разложения С14 (5568±30 лет) и даёт возможность установить возраст объекта, или, точнее, срок, который прошёл после его смерти.

лаборатории радиоуглеродного анализа

Казалось бы, всё ясно и просто, однако при таком способе датировки образцов многие даты оказываются ошибочными вследствие загрязнённости объектов или ненадёжности их связи с другими археологическими находками. Поэтому многолетняя практика применения радиоуглеродных измерений заставила сомневаться в их точности. Американский археолог У. Брей и английский историк Д. Трамп пишут: «Во-первых, полученные даты никогда не являются точными, только в двух случаях из трех правильная дата укладывается в этом интервале; во-вторых, скорость распада С14 основывается на периоде полураспада 5568±30 лет, и сейчас становится ясно, что это значение скорости полураспада слишком мало. Значение решено не менять, пока не будет принята новая международная норма; и, в третьих, тезис о неизменности скорости полураспада С14 тоже встречает возражения». Сравнивая результаты этого метода (по одним и тем же образцам) с результатами дендрохронологического анализа (то есть по кольцам среза деревьев), уже упомянутые исследователи делают вывод, что к датировке радиоуглеродным методом можно относиться с доверием только для последних 2000 лет.

туринская плащаница фото, самый знаменитый объект для исследований методом радиоуглеродного анализа

Российский ученый Ф. Завельский говорит, радиоуглеродный метод датировки зависит от справедливости принятых apriori в науке допущений:

  • - допущение интенсивность космического из-лучения, падающего на Землю десятки тысяч лет, не менялась;
  • - радиоуглерод, земной атмосферы облучался нейтронами, «разбавлялся» стабильным углеродом всегда одинаково;
  • - удельная активность углерода в атмосфере не зависит от долготы и широты местности и её высоты над уровнем моря;
  • - содержание радиоуглерода в живых организмах было таким же, как и в атмосфере на протяжении обозримой истории. Если одно из принятых допущений окажется неверным, (а если сразу несколько) то результаты радиоуглеродного метода вообще могут стать иллюзорными.
  • Исследователь А. Скляров о применении радиоуглеродного анализа пишет так: «Ненавязчивое желание» лабораторий радиоуглеродных исследований заранее получить от историков и археологов «ориентировочный возраст образца» порождено тщательно скрываемой погрешностью самого метода и носит характер «от лукавого» .
  • Таким образом, для хотя бы ориентировочной датировки археологам приходится параллельно применять другие методы, прибегая к простому сравнению результатов, исходя из того, какая датировка лучше подходит для той или иной находки или всего археологического комплекса. Понятно, что точность датировок в этом случае оставляет желать лучшего.

Туринская плащаница: позитив и негатив

Исследование фрагментов Туринской плащаницы - один из наиболее известных случаев применения радиоуглеродного метода датировки объекта исследований.
Радиоуглеродный анализ датировал плащаницу периодом XI - XIII вв. Скептики считают такой результат подтверждением того, что плащаница - средневековая подделка. Сторонники же подлинности реликвии считают полученные данные результатом загрязнения плащаницы углеродом при пожаре в XVI в.

Понятно, чтобы объявить тот или иной артефакт достоянием какой-то працивилизации, необходимо установить его возраст, определив точную дату создания предмета. Однако современные археологи и историки способны это сделать лишь в очень редких случаях. Подавляющее большинство археологических находок датируются приблизительно. Радиоуглеродный метод датировки в археологи Для датировки найденных предметов применяются несколько методов, но, к сожалению, каждый из них не свободен от недостатков, особенно применительно к поискам следов прадревних культур. Радиоуглеродный метод: - Образование радиоуглерода 14С - Распад 14С - Условие равновесия для живых организмов и неравновесие для умерших организмов, в которых радиоуглерод распадается без пополнения извне радиоуглеродный…

Обзор



Просмотров