Что такое коэффициент многочлена. Многочлен, его стандартный вид, степень и коэффициенты членов

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Разложение многочлена пятой степени на квадратичные множители с помощью интерполяционного многочлена Лагранжа

    Определение интерполяционного многочлена Лагранжа пятой степени.

Чтобы разложить приведенный многочлен пятой степени на множители необходимо выполнение равенства: f(x)=φ(x)·g(x). При этом степень многочленов φ(x) и g(x) должна быть не выше пятой.

Для определения целого многочлена не выше пятой степени с заданной таблицей значений существует формула интерполяционного многочлена Лагранжа (ИМЛ ):

φ(x) = F(x)· , где F(x)=(x-x 1)·(x-x 2)·(x-x 3)·(x-x 4)·(x-x 5)(x-x 6), Fʹ(x k) значения производной функции F(x) в точках x k .

Где необходимо задать на плоскости координаты шести точек.

Для определения множителей φ(x) и g(x) выберем произвольно шесть целых значений x= x 1 ; x 2 ; x 3 ; x 4 ; x 5 ; x 6 и станем подставлять их в равенство f(x)= φ(x)·g(x). Получим:

f(x 1)= φ(x 1)·g(x 1) ; f(x 2)= φ(x 2)·g(x 2); f(x 3)= φ(x 3)·g(x 3);

f(x 4)= φ(x 4)·g(x 4) ; f(x 5)=φ(x 5)·g(x 5); f(x 6)= φ(x 6)· g(x 6).

Эти равенства показывают, что каждое значение φ(x k) искомого множителя φ(x) является делителем числа f(x k).

Для построения множителя φ(x) воспользуемся ИМЛ и в качестве f(x k) будем подставлять произвольные целые числа А k , а значения x k выберем в виде последовательных целых чисел близких к нулю, т.е.

x 1 = -3; x 2 = -2; x 3 = -1; x 4 =0; x 5 =1; x 6 =2.

В развернутом виде ИМЛ φ(x) выглядит так:

φ(x) = F(x) , где F(x)=(x+3)·(x+2)·(x+1)·x·(x-1)·(x-2). (2).

Для построения множителя φ(x) с помощью ИМЛ необходимо задать числа А 1 ; А 2 ; А 3 ; А 4 ; А 5 ; А 6 .

Определение: числа А 1 ; А 2 ; А 3 ; А 4 ; А 5 ; А 6 взятые из формулы ИМЛ записанные в ряд называются Лагранжевым рядом.

    Разложение многочлена на линейные множителис помощью ИМЛ.

Теорема 1 (Обобщение схемы Горнера)

Многочлен φ(x) является линейным, если числа А 1 ; А 2 ; А 3 ; А 4 ; А 5 ; А 6 образуют возрастающую последовательность целых чисел.

Доказательство: приведем многочлен (2) к наименьшему общему знаменателю, т.е. к 120· F(x), получившийся числитель запишем в виде многочлена пятой степени у которого коэффициенты содержат числа А 1 ; А 2 ; А 3 ; А 4 ; А 5 ; А 6 . Для того что бы многочлен (2) был линейным необходимо приравнять к нулю коэффициенты при «х» пятой, четвертой, третьей и второй степени, а коэффициент при «х» первой степени приравнять к 120. В результате получим следующую систему из пяти уравнений с шестью переменными:

5·А 2 +80·А 3 -150·А 4 +80·А 4 -5·А 6 =0

4·А 1 +30·А 2 -120·А 3 +40·А 4 +60·А 5 -6·А 6 =120.

Если зафиксировать число А 6 то все остальные выразятся следующими формулами: А 1 6 -5; А 2 6 -4; А 3 6 -3; А 4 6 -2; А 5 6 -1.

Мы получили возрастающую последовательность целых чисел.

Из теоремы вытекает что линейный множитель имеет следующий вид: φ(x)=x+А 4 (3).

Определение : последовательность чисел заданных данными соотношениями А 1 =А 6 -5; А 2 =А 6 -4; А 3 =А 6 -3; А 4 =А 6 -2; А 5 =А 6 -1; А 6 называют линейным Лагранжевым рядом.

Определение : линейный Лагранжевый ряд называется «кандидатом » если все его числа А k являются делителями соответствующих значений функции f(x k), где k=1;2;3;4;5;6.

Для всех кандидатов строим линейный множитель φ(x) по формуле (3) и проверяем его на делимость с f(x).

Из теоремы вытекает что линейный множитель имеет следующий вид φ(x)=x+А 4 ,

где А 4 является делителем свободного члена т.е. f(0). Аналогично определяется линейный множитель приведенного многочлена по схеме Горнера.

Пример: f(x)= x 5 -8x 4 +2x 3 -16x 2 +x-8. По схеме Горнера найдем значение многочлена при х= -3; -2; -1; 0;1;2. Для этого составим таблицу 1:

Последний столбец таблицы 1 перепишем первой строкой таблицы 2. Выберем в этой строке число, имеющее наименьшее число делителей. В нашем примере это число -8. Запишем в столбик все его делители. Каждому делителю числа -8 запишем в строчку линейный Лагранжевый ряд. Из получившихся Лагранжевых рядов выберем «кандидатов». Построим с помощью «кандидатов» многочлен φ(x) по формуле (3) и проверим их на делимость с данным многочленом f(x)= x 5 -8x 4 +2x 3 -16x 2 +x-8.

Таблица 2:

«кандидат»

В приведенной выше таблице 2 закрашены серым цветом прямоугольники, в которых находятся числа, не являющиеся делителями соответствующих значений функции f(x). В данной таблице находится строка или Лагранжевый ряд все числа, которого являются делителями соответствующих значений функции f(x). Этот ряд является единственным кандидатом. В этом ряде А 4 = -8, подставляя в формулу φ(x)=x- А 4 , находим φ(x)=x- 8.

Проверка: x 5 -8x 4 +2x 3 -16x 2 +x-8=(x-8)·(x 4 +2x 2 +1). Действительный кандидат выделим черным цветом.

    Разложение многочленана квадратичные множители с помощью ИМЛ.

Теорема 2 . Множитель φ(x) является квадратичным если числа А 1 ; А 2 ; А 3 ; А 4 ; А 5 ; А 6 связаны между собой следующими соотношениями:

А 1 =5·(А 5 +4)-4·А 6

А 2 =4·(А 5 +3)-3·А 6

А 3 =3·(А 5 +2)-2·А 6

А 4 =2·(А 5 +1)-1·А 6

Доказательство: Доказательство: приведем многочлен (1) к наименьшему общему знаменателю, т.е. к 120· F(x),получившийся числитель запишем в виде многочлена пятой степени у которого коэффициенты содержат числа А 1 ; А 2 ; А 3 ; А 4 ; А 5 ; А 6 . Для того что бы многочлен (1) был квадратичным необходимо приравнять к нулю коэффициенты при «х» пятой, четвертой и третьей степени, а коэффициент при «х» второй степени приравнять к 120. В результате получим следующую систему из четырех уравнений с шестью переменными:

А 1 +5·А 2 -10·А 3 +10·А 4 -5·А 5 +А 6 =0

5·А 2 -20·А 3 +30·А 4 -20·А 5 +5·А 6 =0

5·А 1 -35·А 2 +70·А 3 -50·А 4 +5·А 5 +5·А 6 =0

5·А 2 +80·А 3 -150·А 4 +80·А 5 -5·А 6 =120.

Если зафиксировать два числа А 5 и А 6 то все остальные выразятся следующими формулами:

А 1 =5·(А 5 +4)-4·А 6 ; А 2 =4·(А 5 +3)-3·А 6 ;

А 3 =3·(А 5 +2)-2·А 6 ; А 4 =2·(А 5 +1)-1·А 6 .

Из теоремы вытекает, что квадратичный множитель выразится формулой φ(x)=x 2 +(А 6 - А 5 -3) ·x+ А 4 . (4)

Определение: Последовательность целых чисел заданных следующими

соотношениями А 1 =5·(А 5 +4)-4·А 6 ; А 2 =4·(А 5 +3)-3·А 6 ; А 3 =3·(А 5 +2)-2·А 6 ; А 4 =2·(А 5 +1)-1·А 6 называется квадратичным Лагранжевым рядом

Определение : квадратичный Лагранжевый ряд называется «кандидатом» если все его числа А k являются делителями соответствующих значений функции f(x k), k=1;2;3;4;5;6.

Для всех кандидатов строим квадратичный множитель φ(x) по формуле (4) и проверяем его на делимость с f(x).

    Упрощенный вид квадратичных Лагранжевых рядов.

Формулы квадратичного Лагранжевого ряда можно упростить. Для этого буквой «d» обозначим разность А 5 - А 6 , тогда числа квадратичного Лагранжевого ряда будут выглядеть более простыми формулами и удобными для их построения:

Пример: А 5 =7; А 6 =10 составить квадратичный Лагранжевый ряд.

Найдем d=7-10=-3, тогда по формулам таблицы найдем числа данного ряда:

Ответ: 15; 10; 7; 6; 7; 10.

Рассмотрим пример разложения приведенного многочлена пятой степени на множители: f(x)=x 5 -5x 4 +13x 3 -22x 2 +27x-20 .

    По схеме Горнера найдем значения функции при х=-3; -2;-1; 0;1;2. Для этого составим таблицу:

  1. Определим, имеет ли данный многочлен, линейные множители. Для этого в строчку таблицы №3 запишем получившиеся значения функции. Из них выберем число, имеющее наименьшее число делителей. В нашем примере это число «2». Запишем в столбик все его целые делители. Для каждого делителя числа «2» в строчку запишем линейные Лагранжевые ряды. Из них выберем кандидатов и проверим на делимость с данным многочленом f(x).

Таблица №3:

В данной таблице №3 серым цветом отмечены клетки, в которых находятся числа, не являющиеся делителями соответствующих значений функции f(x). Пустые клетки заполнять нет необходимости, так как построенный квадратичный Лагранжевый ряд с числом в серой клетке заведомо не является «кандидатом». Из данной №3 таблицы видно, что «кандидатов» нет. Это значит что данный многочлен f(x)=x 5 -5x 4 +13x 3 -22x 2 +27x-20 на линейные множители не раскладывается.

    Определим, имеет ли данный многочлен, квадратичные множители. Для этого в строчку таблицы №4 запишем получившиеся значения функции. Из них выберем два числа, имеющие наименьшее число делителей. В нашем примере это числа «2» и «-6» запишем их делители в столбики. Для каждой пары делителей чисел «2» и «-6» в строчку запишем квадратичные Лагранжевые ряды. Из них выберем кандидатов и проверим их на делимость с данным многочленом f(x).

Таблица №4:

В данной таблице №4 мы видим двух «кандидатов». С их помощью по формуле φ(x)=x 2 +(А 6 - А 5 -3) ·x+ А 4 найдем квадратные множители: φ 1 (x)=x 2 -3х+ 4; φ 2 (x)=x 2 +x-4.

Проверка показывает, что один из двух множителей является истинным это φ 1 (x)=x 2 -3х+ 4, а другой множитель оказался посторонним.

Ответ: x 5 -5x 4 +13x 3 -22x 2 +27x-20=(x 2 -3х+ 4)·(x 3 -2x 2 +3x-5).

В данной таблице №4 получили 32 квадратичных Лагранжевых ряда. Это число определяется количеством различных пар делителей, как положительных, так и отрицательных, двух значений функции, которые расположены двумя столбиками по соседству.

    Уменьшение числа квадратичных Лагранжевых рядов.

Если значения функции число делителей, которых минимально, расположены не по соседству, то можно воспользоваться следующей теоремой:

Теорема 3 Пустьизвестны А 4 и А 6 тогда А 5 =(А 4 + А 6 ·1):2-1

Пустьизвестны А 3 и А 6 тогда А 5 =(А 3 + А 6 ·2):3-2

Пустьизвестны А 2 и А 6 тогда А 5 =(А 2 + А 6 ·3):4-3

Пустьизвестны А 1 и А 6 тогда А 5 =(А 1 + А 6 ·4):5-4.

Доказательство: докажем последнее равенство А 5 =(А 1 +А 6 ·4):5-4. По определению квадратичных Лагранжевых чисел, А 1 =5·(А 5 +4)-4·А 6 подставим это число в исходное равенство получим А 5 =(5·(А 5 +4)-4·А 6 +А 6 ·4):5-4=(5 ·А 5 +20):5-4=А 5 +4-4=А 5 что и требовалось доказать. Другие равенства доказываются аналогично.

Данная теорема позволяет уменьшить число квадратичных Лагранжевых рядов. Рассмотрим уже решенный нами примерf(x)=x 5 -5x 4 +13x 3 -22x 2 +27x-20

и решим его на случай когда мы рассматриваем квадратичные Лагранжевые ряды построенных с помощью делителей А 4 и А 6 .

Таблица №5:

(А 4 + А 6 ·1):2-1

В данной таблице №5 мы получили 24 квадратичных Лагранжевых ряда. Так как в формуле сумму А 4 и А 6 необходимо делить на 2, поэтому делители А 4 и А 6 должны быть либо оба четными, либо оба нечетными. За счет этого уменьшилось число квадратичных Лагранжевых рядов. Если использовать данную теорему 3 для записи квадратичных Лагранжевых рядов, построенных с помощью А 1 и А 6 , то число рядов уменьшится до 12.

Таблица №6:

В таблице №6 число квадратичных Лагранжевых рядов уменьшилось до 12, так как А 5 находится по формуле (4A 1 +A 6):5-4 и А 5 как целое число должно быть меньше или равно -6. Во всех таблицах черная выделенная строка является «действительным кандидатом». Остальные кандидаты являются «мнимыми».

Для многочлена шестой степени можно доказать, что квадратичный множитель можно найти по формуле: φ(x)=x 2 +(А 7 - А 6 - 5) ·x+ А 4 , где числа А 1 ; А 2 ; А 3 ; А 4 ; А 5 ; А 6 ; А 7 образуют квадратичный Лагранжевый ряд.

    Выводы:

    Данный метод разложения, использующий ИМЛ является обобщением «схемы Горнера».

    Данным методом можно определить квадратичные множители для многочленов выше пятой степени.

    Данным методом можно исследовать свойства Лагранжевых чисел для определения кубических многочленов в разложении многочленов пятой и выше степени.

    Литература:

1. А. Н. Чеботарев «Основы теории Галуа», ОМТИ ГТТИ, 1934г., 1ч.

2. «Числа и многочлены», составитель А.А. Егоров - М.: бюро Квантум, 2000/ приложение к журналу «Квант» №6, 2000г.

После изучения одночленов переходим к многочленам. Данная статья расскажет о всех необходимых сведениях, необходимых для выполнения действий над ними. Мы определим многочлен с сопутствующими определениями члена многочлена, то есть свободный и подобный, рассмотрим многочлен стандартного вида, введем степень и научимся ее находить, поработаем с его коэффициентами.

Yandex.RTB R-A-339285-1

Многочлен и его члены – определения и примеры

Определение многочлена было надо еще в 7 классе после изучения одночленов. Рассмотрим его полное определение.

Определение 1

Многочленом считается сумма одночленов, причем сам одночлен – это частный случай многочлена.

Из определения следует, что примеры многочленов могут быть различными: 5 , 0 , − 1 , x , 5 · a · b 3 , x 2 · 0 , 6 · x · (− 2) · y 12 , - 2 13 · x · y 2 · 3 2 3 · x · x 3 · y · z и так далее. Из определения имеем, что 1 + x , a 2 + b 2 и выражение x 2 - 2 · x · y + 2 5 · x 2 + y 2 + 5 , 2 · y · x являются многочленами.

Рассмотрим еще определения.

Определение 2

Членами многочлена называются его составляющие одночлены.

Рассмотрим такой пример, где имеем многочлен 3 · x 4 − 2 · x · y + 3 − y 3 , состоящий из 4 членов: 3 · x 4 , − 2 · x · y , 3 и − y 3 . Такой одночлен можно считать многочленом, который состоит из одного члена.

Определение 3

Многочлены, которые имеют в своем составе 2 , 3 трехчлена имеют соответственное название – двучлен и трехчлен .

Отсюда следует, что выражение вида x + y – является двучленом, а выражение 2 · x 3 · q − q · x · x + 7 · b – трехчленом.

По школьной программе работали с линейным двучленом вида a · x + b , где а и b являются некоторыми числами, а х – переменной. Рассмотрим примеры линейных двучленов вида: x + 1 , x · 7 , 2 − 4 с примерами квадратных трехчленов x 2 + 3 · x − 5 и 2 5 · x 2 - 3 x + 11 .

Для преобразования и решения необходимо находить и приводить подобные слагаемые. Например, многочлен вида 1 + 5 · x − 3 + y + 2 · x имеет подобные слагаемые 1 и - 3 , 5 х и 2 х. Их подразделяют в особую группу под названием подобных членов многочлена.

Определение 4

Подобные члены многочлена – это подобные слагаемые, находящиеся в многочлене.

В примере, приведенном выше, имеем, что 1 и - 3 , 5 х и 2 х являются подобными членами многочлена или подобными слагаемыми. Для того, что бы упростить выражение, применяют нахождение и приведение подобных слагаемых.

Многочлен стандартного вида

У всех одночленов и многочленов имеются свои определенные названия.

Определение 5

Многочленом стандартного вида называют многочлен, у которого каждый входящий в него член имеет одночлен стандартного вида и не содержит подобных членов.

Из определения видно, что возможно приведение многочленов стандартного вида, например, 3 · x 2 − x · y + 1 и __formula__, причем запись в стандартном виде. Выражения 5 + 3 · x 2 − x 2 + 2 · x · z и 5 + 3 · x 2 − x 2 + 2 · x · z многочленами стандартного вида не является, так как первый из них имеет подобные слагаемые в виде 3 · x 2 и − x 2 , а второй содержит одночлен вида x · y 3 · x · z 2 , отличающийся от стандартного многочлена.

Если того требуют обстоятельства, иногда многочлен приводится к стандартному виду. Многочленом стандартного вида считается и понятие свободного члена многочлена.

Определение 6

Свободным членом многочлена является многочлен стандартного вида, не имеющий буквенной части.

Иначе говоря, когда запись многочлена в стандартном виде имеет число, его называют свободным членом. Тогда число 5 является свободным членом многочлена x 2 · z + 5 , а многочлен 7 · a + 4 · a · b + b 3 свободного члена не имеет.

Степень многочлена – как ее найти?

Определение самой степени многочлена базируется на определении многочлена стандартного вида и на степенях одночленов, которые являются его составляющими.

Определение 7

Степенью многочлена стандартного вида называют наибольшую из степеней, входящих в его запись.

Рассмотрим на примере. Степень многочлена 5 · x 3 − 4 равняется 3 , потому как одночлены, входящие в его состав, имеют степени 3 и 0 , а большее из них 3 соответственно. Определение степени из многочлена 4 · x 2 · y 3 − 5 · x 4 · y + 6 · x равняется наибольшему из чисел, то есть 2 + 3 = 5 , 4 + 1 = 5 и 1 , значит 5 .

Следует выяснить, каким образом находится сама степень.

Определение 8

Степень многочлена произвольного числа - это степень соответствующего ему многочлена в стандартном виде.

Когда многочлен записан не в стандартном виде, но нужно найти его степень, необходимо приведение к стандартному, после чего находить искомую степень.

Пример 1

Найти степень многочлена 3 · a 12 − 2 · a · b · c · a · c · b + y 2 · z 2 − 2 · a 12 − a 12 .

Решение

Для начала представим многочлен в стандартном виде. Получим выражение вида:

3 · a 12 − 2 · a · b · c · a · c · b + y 2 · z 2 − 2 · a 12 − a 12 = = (3 · a 12 − 2 · a 12 − a 12) − 2 · (a · a) · (b · b) · (c · c) + y 2 · z 2 = = − 2 · a 2 · b 2 · c 2 + y 2 · z 2

При получении многочлена стандартного вида получаем, что отчетливо выделяются два из них − 2 · a 2 · b 2 · c 2 и y 2 · z 2 . Для нахождения степеней посчитаем и получим, что 2 + 2 + 2 = 6 и 2 + 2 = 4 . Видно, что наибольшая из них равняется 6 . Из определения следует, что именно 6 является степенью многочлена − 2 · a 2 · b 2 · c 2 + y 2 · z 2 , следовательно и исходного значения.

Ответ : 6 .

Коэффициенты членов многочлена

Определение 9

Когда все члены многочлена являются одночленами стандартного вида, то в таком случаем они имеют название коэффициентов членов многочлена. Иначе говоря, их можно называть коэффициентами многочлена.

При рассмотрении примера видно, что многочлен вида 2 · x − 0 , 5 · x · y + 3 · x + 7 имеет в своем составе 4 многочлена: 2 · x , − 0 , 5 · x · y , 3 · x и 7 с соответствующими их коэффициентами 2 , − 0 , 5 , 3 и 7 . Значит, 2 , − 0 , 5 , 3 и 7 считаются коэффициентами членов заданного многочлена вида 2 · x − 0 , 5 · x · y + 3 · x + 7 . При преобразовании важно обращать внимание на коэффициенты, стоящие перед переменными.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

полином, выражение вида

Axkyl┘..wm + Bxnyp┘..wq + ┘┘ + Dxrts┘..wt,

где х, у, ..., w ≈ переменные, а А, В, ..., D (коэффициенты М.) и k, l, ..., t (показатели степеней ≈ целые неотрицательные числа) ≈ постоянные. Отдельные слагаемые вида Ахkyl┘..wmназываются членами М. Порядок членов, а также порядок множителей в каждом члене можно менять произвольно; точно так же можно вводить или опускать члены с нулевыми коэффициентами, а в каждом отдельном члене ≈ степени с нулевыми показателями. В случае, когда М. имеет один, два или три члена, его называют одночленом, двучленом или трёхчленом. Два члена М. называются подобными, если в них показатели степеней при одинаковых переменных попарно равны. Подобные между собой члены

А"хkyl┘..wm, B"xkyl┘..wm, ┘.., D"xkyl┘..wm

можно заменить одним (приведение подобных членов). Два М. называются равными, если после приведения подобных все члены с отличными от нуля коэффициентами оказываются попарно одинаковыми (но, может быть, записанными в разном порядке), а также если все коэффициенты этих М. оказываются равными нулю. В последнем случае М. называется тождественным нулём и обозначают знаком 0. М. от одного переменного х можно всегда записать в виде

P(x) = a0xn+ a1xn-1 + ... + an-1x+ an,

где a0, a1,..., an ≈ коэффициенты.

Сумму показателей степеней какого-либо члена М. называют степенью этого члена. Если М. не тождественный нуль, то среди членов с отличными от нуля коэффициентами (предполагается, что все подобные члены приведены) имеются один или несколько наибольшей степени; эту наибольшую степень называют степенью М. Тождественный нуль не имеет степени. М. нулевой степени сводится к одному члену А (постоянному, не равному нулю). Примеры: xyz + х + у + z есть многочлен третьей степени, 2x + у ≈ z + 1 есть многочлен первой степени (линейный М.), 5x2 ≈ 2x2 ≈ 3х2 не имеет степени, т. к. это тождественный нуль. М., все члены которого одинаковой степени, называется однородным М., или формой; формы первой, второй и третьей степеней называются линейными, квадратичными, кубичными, а по числу переменных (два, три) двоичными (бинарными), тройничными (тернарными) (например, x2 + y2 + z2 ≈ ху ≈ yz ≈ xz есть тройничная квадратичная форма).

Относительно коэффициентов М. предполагается, что они принадлежат определённому полю (см. Поле алгебраическое), например полю рациональных, действительных или комплексных чисел. Выполняя над М. действия сложения, вычитания и умножения на основании переместительного, сочетательного и распределительного законов, получают снова М. Таким образом, совокупность всех М. с коэффициентами из данного поля образует кольцо (см. Кольцо алгебраическое) ≈ кольцо многочленов над данным полем; это кольцо не имеет делителей нуля, т. е. произведение М., не равных 0, не может дать 0.

Если для двух многочленов Р(х) и Q(x) можно найти такой многочлен R(x), что Р = QR, то говорят, что Р делится на Q; Q называется делителем, a R ≈ частным. Если Р не делится на Q, то можно найти такие многочлены Р(х) и S(x), что Р = QR + S, причём степень S(x) меньше степени Q(x).

Посредством повторного применения этой операции можно находить наибольший общий делитель Р и Q, т. е. такой делитель Р и Q, который делится на любой общий делитель этих многочленов (см. Евклида алгоритм). М., который можно представить в виде произведения М. низших степеней с коэффициентами из данного поля, называется приводимым (в данном поле), в противном случае ≈ неприводимым. Неприводимые М. играют в кольце М. роль, сходную с простыми числами в теории целых чисел. Так, например, верна теорема: если произведение PQ делится на неприводимый многочлен R, a P на R не делится, то тогда Q должно делиться на R. Каждый М. степени, большей нуля, разлагается в данном поле в произведение неприводимых множителей единственным образом (с точностью до множителей нулевой степени). Например, многочлен x4 + 1, неприводимый в поле рациональных чисел, разлагается на два множителя

в поле действительных чисел и на четыре множителя ═в поле комплексных чисел. Вообще каждый М. от одного переменного х разлагается в поле действительных чисел на множители первой и второй степени, в поле комплексных чисел ≈ на множители первой степени (основная теорема алгебры). Для двух и большего числа переменных этого уже нельзя утверждать; например, многочлен x3 + yz2 + z3 неприводим в любом числовом поле.

Если переменным х, у, ..., w придать определённые числовые значения (например, действительные или комплексные), то М. также получит определённое числовое значение. Отсюда следует, что каждый М. можно рассматривать как функцию соответствующих переменных. Эта функция непрерывна и дифференцируема при любых значениях переменных; её можно характеризовать как целую рациональную функцию, т. е. функцию, получающуюся из переменных и некоторых постоянных (коэффициентов) посредством выполненных в определённом порядке действий сложения, вычитания и умножения. Целые рациональные функции входят в более широкий класс рациональных функций, где к перечисленным действиям присоединяется деление: любую рациональную функцию можно представить в виде частного двух М. Наконец, рациональные функции содержатся в классе алгебраических функций.

К числу важнейших свойств М. относится то, что любую непрерывную функцию можно с произвольно малой ошибкой заменить М. (теорема Вейерштрасса; точная её формулировка требует, чтобы данная функция была непрерывна на каком-либо ограниченном, замкнутом множестве точек, например на отрезке числовой оси). Этот факт, доказываемый средствами математического анализа, даёт возможность приближённо выражать М. любую связь между величинами, изучаемую в каком-либо вопросе естествознания и техники. Способы такого выражения исследуются в специальных разделах математики (см. Приближение и интерполирование функций, Наименьших квадратов метод).

В элементарной алгебре многочленом иногда называются такие алгебраические выражения, в которых последним действием является сложение или вычитание, например

Лит. : Курош А. Г., Курс высшей алгебры, 9 изд., М., 1968; Мишина А. П., Проскуряков И. В., Высшая алгебра, 2 изд., М., 1965.

Согласно определению, многочлен это алгебраическое выражение представляющее собой сумму одночленов.

Для примера: 2*a^2 + 4*a*x^7 - 3*a*b^3 + 4; 6 + 4*b^3 - многочлены, а выражение z/(x - x*y^2 + 4) не является многочленом потому, что оно не является суммой одночленов. Многочлен еще иногда называют полиномом, а одночлены которые входят в состав многочлена членами многочлена или мономами.

Комплексное понятие многочлена

Если многочлен состоит из двух слагаемых, то его называют двучлен, если из трех - трехчлен. Названия четырехчлен, пятичлен и другие не используются, а в таких случаях говорят просто, многочлен. Такие названия, в зависимости от количества слагаемых, ставят все на свои места.

И термин одночлен становится интуитивно понятным. С точки зрения математики, одночлен является частным случаем многочлена. Одночлен это многочлен, который состоит из одного слагаемого.

Так же как и у одночлена, у многочлена есть свой стандартный вид. Стандартным видом многочлена называется такая запись многочлена, при которой все входящие в него в качестве слагаемых одночлены, записаны в стандартном виде и приведены подобные члены.

Стандартный вид многочлена

Процедура приведения многочлена к стандартному виду состоит в том, чтобы привести каждый из одночленов к стандартному виду, а потом все подобные одночлены между собой сложить. Сложение подобных членов многочлена называют приведением подобных.
Например, приведем подобные слагаемые в многочлене 4*a*b^2*c^3 + 6*a*b^2*c^3 - a*b.

Подобными здесь являются слагаемые 4*a*b^2*c^3 и 6*a*b^2*c^3. Суммой этих слагаемых будет одночлен 10*a*b^2*c^3. Следовательно, исходный многочлен 4*a*b^2*c^3 + 6*a*b^2*c^3 - a*b можно переписать в виде 10*a*b^2*c^3 - a*b. Эта запись и будет стандартным видом многочлена.

Из того, что любой одночлен можно привести к стандартному виду, следует также и тот факт, что любой многочлен можно привести к стандартному виду.

Когда многочлен приведен к стандартному виду, можно говорить о таком понятии как степень многочлена. Степенью многочлена называется наибольшая степень одночлена, входящего в данный многочлен.
Так, например, 1 + 4*x^3 - 5*x^3*y^2 - многочлен пятой степени, так как максимальная степень одночлена входящего в многочлен (5*x^3*y^2) пятая.

Которые требуют разложения многочлена на множители, определите общий множитель данного выражения. Для этого сначала вынесите за скобки те переменные, которые входят в всех членов выражения. Причем эти переменные должны иметь наименьший показатель. Затем вычислите наибольший общий делитель каждого из коэффициентов многочлена. Модуль полученного числа будет коэффициентом общего множителя.

Пример. Разложите на 5m³–10m²n²+5m². Вынесите за скобки m², т.к. переменная m в каждый член данного выражения и ее наименьший показатель равен двум. Вычислите коэффициент общего множителя. Он равен пяти. Таким образом, общий множитель данного выражения равен 5m². Отсюда: 5m³–10m²n²+5m²=5m²(m–2n²+1).

Если выражение не имеет общего множителя, попробуйте разложить его способом группировки. Для этого объедините в группы те члены, у которых имеются общие множители. Вынесите общий множитель каждой группы за скобки. Вынесите за скобки общий множитель у всех образовавшихся групп.

Пример. Разложите на множители многочлен a³–3a²+4a–12. Произведите группировку следующим образом: (a³–3a²)+(4a–12). Вынесите за скобку общий множитель a² в первой группе и общий множитель 4 во второй группе. Отсюда: a²(a–3)+4(a–3). Вынесите за скобки многочлен a–3, получите: (a–3)(a²+4). Следовательно, a³–3a²+4a–12=(a–3)(a²+4).

Некоторые многочлены раскладываются на множители при помощи формул сокращенного умножения. Для этого приведите многочлен к нужному виду способом группировки или при помощи вынесения за скобки общего множителя. Далее примените соответствующую формулу сокращенного умножения.

Пример. Разложите на множители многочлен 4x²–m²+2mn–n². Объедините в скобки последние три члена, при этом вынесите за скобки –1. Получите: 4x²–(m²–2mn+n²). Выражение в скобках можно представить в виде квадрата разности. Отсюда: (2x)²–(m–n)². Это есть разность квадратов, можно записать: (2x–m+n)(2x+m+n). Таким образом, 4x²–m²+2mn–n²=(2x–m+n)(2x+m+n).

Некоторые многочлены можно разложить на множители методом неопределенных коэффициентов. Так, каждый многочлен можно представить в виде (y–t)(my²+ny+k), где t, m, n, k – числовые коэффициенты. Следовательно, задача сводится к определению значений этих коэффициентов. Это делается, исходя из данного равенства: (y–t)(my²+ny+k)=my³+(n–mt)y²+(k–nt)y–tk.

Пример. Разложите на множители многочлен 2a³–a²–7a+2. Из второй части для многочлена третьей степени составьте равенства: m=2; n–mt=–1; k–nt=–7; –tk=2. Запишите их в виде системы . Решите ее. Вы найдете значения t=2; n=3; k=–1. Подставьте вычисленные коэффициенты в первую часть формулы, получите: 2a³–a²–7a+2=(a–2)(2a²+3a–1).

Источники:

  • Разложение многочленов на множители
  • как разложить на множители на многочлен

Математическая наука изучает различные структуры, последовательности чисел, отношений между ними, составление уравнений и их решение. Это формальный язык, которым можно четко описать приближенные к идеальным свойства реальных объектов, изучаемых в других областях науки. Одной из таких структур является многочлен.

Инструкция

Многочлен или (от греч. «поли» - много и лат. «номен» - имя) – элементарных функций классической алгебры и алгебраической геометрии. Это функция одной переменной, которая имеет вид F(x) = c_0 + c_1*x + … + c_n*x^n, где c_i – фиксированные коэффициенты, x – переменная.

Многочлены применяются во многих разделах, в том числе рассмотрении нуля, отрицательных и комплексных чисел, теории групп, колец, узлов, множеств и т.д. Использование полиномиальных вычислений значительно упрощает выражение свойств разных объектов.

Основные определения :
Каждое слагаемое полинома называется или мономом.
Многочлен, состоящий из двух одночленов, называют двучленом или биномом.
Коэффициенты полинома – вещественные или комплексные числа.
Если коэффициент равен 1, то называют унитарным (приведенным).
Степени переменной в каждом одночлене – целые неотрицательные числа, максимальная степень определяет степень многочлена, а его полной степенью называется целое число, равное сумме всех степеней.
Одночлен, соответствующий нулевой степени, называется свободным членом.
Многочлен, все которого имеют одинаковую полную степень, называется однородным.

Некоторые часто используемые многочлены названы по фамилии ученого, который их определил, а также функции, которые они задают. Например, Бином Ньютона – это для разложения полинома на отдельные слагаемые для вычисления степеней. Это известные из школьной программы записи квадратов суммы и разности (a + b)^2 – a^2 + 2*a*b + b^2, (a – b)^2 = a^2 – 2*a*b + b^2 и разность квадратов (a^2 – b^2) = (a - b)*(a + b).

Если допустить в записи многочлена отрицательные степени, то получится многочлен или ряд Лорана; многочлен Чебышева используется в теории приближений; многочлен Эрмита – в теории вероятностей; Лагранжа – для численного интегрирования и интерполяции; Тейлора – при аппроксимации функции и т.д.

Обратите внимание

Бином Ньютона часто упоминают в книгах («Мастер и Маргарита») и фильмах («Сталкер»), когда герои решают математические задачи. Этот термин на слуху, поэтому считается самым известным многочленом.

Совет 3: Как 90 разложить на два взаимно простых множителя

Взаимно простыми множителями называются числа, не имеющие общих делителей, кроме единицы. Алгоритм достаточно прост, попробуйте рассмотреть его на примере: разложите на два взаимно простых множителя число 90.



Просмотров