Исследовательская работа «Замечательные точки треугольника.

В треугольнике есть так называемые четыре замечательные точки: точка пересечения медиан. Точка пересечения биссектрис, точка пересечения высот и точка пересечения серединных перпендикуляров. Рассмотрим каждую из них.

Точка пересечения медиан треугольника

Теорема 1

О пересечении медиан треуголника : Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении $2:1$ начиная с вершины.

Доказательство.

Рассмотрим треугольник $ABC$, где ${AA}_1,\ {BB}_1,\ {CC}_1$ его медианы. Так как медианы делят стороны пополам. Рассмотрим среднюю линию $A_1B_1$ (Рис. 1).

Рисунок 1. Медианы треугольника

По теореме 1, $AB||A_1B_1$ и $AB=2A_1B_1$, следовательно, $\angle ABB_1=\angle BB_1A_1,\ \angle BAA_1=\angle AA_1B_1$. Значит треугольники $ABM$ и $A_1B_1M$ подобны по первому признаку подобия треугольников. Тогда

Аналогично доказывается, что

Теорема доказана.

Точка пересечения биссектрис треугольника

Теорема 2

О пересечении биссектрис треугольника : Биссектрисы треугольника пересекаются в одной точке.

Доказательство.

Рассмотрим треугольник $ABC$, где $AM,\ BP,\ CK$ его биссектрисы. Пусть точка $O$ - точка пересечения биссектрис $AM\ и\ BP$. Проведем из этой точки перпендикуляры к сторонам треугольника (рис. 2).

Рисунок 2. Биссектрисы треугольника

Теорема 3

Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон.

По теореме 3, имеем: $OX=OZ,\ OX=OY$. Следовательно, $OY=OZ$. Значит точка $O$ равноудалена от сторон угла $ACB$ и, значит, лежит на его биссектрисе $CK$.

Теорема доказана.

Точка пересечения серединных перпендикуляров треугольника

Теорема 4

Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Доказательство.

Пусть дан треугольник $ABC$, $n,\ m,\ p$ его серединные перпендикуляры. Пусть точка $O$ - точка пересечения серединных перпендикуляров $n\ и\ m$ (рис. 3).

Рисунок 3. Серединные перпендикуляры треугольника

Для доказательства нам потребуется следующая теорема.

Теорема 5

Каждая точка серединного перпендикуляра к отрезку равноудалена от концов данного отрезка.

По теореме 3, имеем: $OB=OC,\ OB=OA$. Следовательно, $OA=OC$. Значит точка $O$ равноудалена от концов отрезка $AC$ и, значит, лежит на его серединном перпендикуляре $p$.

Теорема доказана.

Точка пересечения высот треугольника

Теорема 6

Высоты треугольника или их продолжения пересекаются в одной точке.

Доказательство.

Рассмотрим треугольник $ABC$, где ${AA}_1,\ {BB}_1,\ {CC}_1$ его высоты. Проведем через каждую вершину треугольника прямую, параллельную противоположной вершине стороне. Получаем новый треугольник $A_2B_2C_2$ (рис. 4).

Рисунок 4. Высоты треугольника

Так как $AC_2BC$ и $B_2ABC$ параллелограммы с общей стороной, то $AC_2=AB_2$, то есть точка $A$ -- середина стороны $C_2B_2$. Аналогично, получаем, что точка $B$ -- середина стороны $C_2A_2$, а точка $C$ -- середина стороны $A_2B_2$. Из построения мы имеем, что ${CC}_1\bot A_2B_2,\ {BB}_1\bot A_2C_2,\ {AA}_1\bot C_2B_2$. Следовательно, ${AA}_1,\ {BB}_1,\ {CC}_1$ -- серединные перпендикуляры треугольника $A_2B_2C_2$. Тогда, по теореме 4, имеем, что высоты ${AA}_1,\ {BB}_1,\ {CC}_1$ пересекаются в одной точке.

В треугольнике есть так называемые четыре замечательные точки: точка пересечения медиан. Точка пересечения биссектрис, точка пересечения высот и точка пересечения серединных перпендикуляров. Рассмотрим каждую из них.

Точка пересечения медиан треугольника

Теорема 1

О пересечении медиан треуголника : Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении $2:1$ начиная с вершины.

Доказательство.

Рассмотрим треугольник $ABC$, где ${AA}_1,\ {BB}_1,\ {CC}_1$ его медианы. Так как медианы делят стороны пополам. Рассмотрим среднюю линию $A_1B_1$ (Рис. 1).

Рисунок 1. Медианы треугольника

По теореме 1, $AB||A_1B_1$ и $AB=2A_1B_1$, следовательно, $\angle ABB_1=\angle BB_1A_1,\ \angle BAA_1=\angle AA_1B_1$. Значит треугольники $ABM$ и $A_1B_1M$ подобны по первому признаку подобия треугольников. Тогда

Аналогично доказывается, что

Теорема доказана.

Точка пересечения биссектрис треугольника

Теорема 2

О пересечении биссектрис треугольника : Биссектрисы треугольника пересекаются в одной точке.

Доказательство.

Рассмотрим треугольник $ABC$, где $AM,\ BP,\ CK$ его биссектрисы. Пусть точка $O$ - точка пересечения биссектрис $AM\ и\ BP$. Проведем из этой точки перпендикуляры к сторонам треугольника (рис. 2).

Рисунок 2. Биссектрисы треугольника

Теорема 3

Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон.

По теореме 3, имеем: $OX=OZ,\ OX=OY$. Следовательно, $OY=OZ$. Значит точка $O$ равноудалена от сторон угла $ACB$ и, значит, лежит на его биссектрисе $CK$.

Теорема доказана.

Точка пересечения серединных перпендикуляров треугольника

Теорема 4

Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Доказательство.

Пусть дан треугольник $ABC$, $n,\ m,\ p$ его серединные перпендикуляры. Пусть точка $O$ - точка пересечения серединных перпендикуляров $n\ и\ m$ (рис. 3).

Рисунок 3. Серединные перпендикуляры треугольника

Для доказательства нам потребуется следующая теорема.

Теорема 5

Каждая точка серединного перпендикуляра к отрезку равноудалена от концов данного отрезка.

По теореме 3, имеем: $OB=OC,\ OB=OA$. Следовательно, $OA=OC$. Значит точка $O$ равноудалена от концов отрезка $AC$ и, значит, лежит на его серединном перпендикуляре $p$.

Теорема доказана.

Точка пересечения высот треугольника

Теорема 6

Высоты треугольника или их продолжения пересекаются в одной точке.

Доказательство.

Рассмотрим треугольник $ABC$, где ${AA}_1,\ {BB}_1,\ {CC}_1$ его высоты. Проведем через каждую вершину треугольника прямую, параллельную противоположной вершине стороне. Получаем новый треугольник $A_2B_2C_2$ (рис. 4).

Рисунок 4. Высоты треугольника

Так как $AC_2BC$ и $B_2ABC$ параллелограммы с общей стороной, то $AC_2=AB_2$, то есть точка $A$ -- середина стороны $C_2B_2$. Аналогично, получаем, что точка $B$ -- середина стороны $C_2A_2$, а точка $C$ -- середина стороны $A_2B_2$. Из построения мы имеем, что ${CC}_1\bot A_2B_2,\ {BB}_1\bot A_2C_2,\ {AA}_1\bot C_2B_2$. Следовательно, ${AA}_1,\ {BB}_1,\ {CC}_1$ -- серединные перпендикуляры треугольника $A_2B_2C_2$. Тогда, по теореме 4, имеем, что высоты ${AA}_1,\ {BB}_1,\ {CC}_1$ пересекаются в одной точке.

Лискинский район, МОУ Аношкинская СОШ.

Учитель математики Сморчкова Е.Б.

Цель проекта : научиться пользоваться различной литературой по геометрии, справочными материалами для более подробного изучения темы «Замечательные точки треугольника», дать более полное представление о теме, подготовить презентацию по данной теме для демонстрации при выступлениях и на уроках.

Геометрия начинается с треугольника. Вот уже два с полови ной тысячелетия треугольник является как бы символом геометрии ; но он не только символ, треугольник - атом геометрии. Да и сегодня школьная геометрия становится интересной и содержательной, становится собственно геометрией только с поя влением треугольника. Предшествующие понятия - точка, прям ая, угол - представляются расплывчатыми абстракциями, а на­ бор теорем и задач, с ними связанный, просто скучным.

Уже с первых шагов своего развития человек, а особенно современный человек, сталкивается со всевозможными геометрическими объектами - фигурами и телами. Известны случаи, когда человек в юном, если не сказать в младенческом, возрасте увлекается геометрией и даже делает самостоятельные геометрические открытия. Так, маленький Блез Паскаль придумал «игру в геометрию», в которой участвовали «монетки» - круги, «треуголки» - треугольники, «столы» - прямоугольники, «палочки» - отрезки. Его отец, основательно знавший математику, на первое время решительно исключил математику из числа предметов, которым он обучал своего сына, поскольку маленький Блез не отличался хорошим здоровьем. Однако, обнаружив увлеченность сына, он кое-что рассказал ему о таинственной геометрии, а застав Блеза в момент, когда тот обнаружил, что углы треугольника составляют в сумме два прямых, растроганный отец открыл своему 12-летнему сыну доступ к математическим книгам, хранившимся в до­машней библиотеке.

Треугольник неисчерпаем - постоянно открываются его новые свойства. Чтобы рассказать о всех известных его свойствах, необходим том, сравнимый по объему с томом Большой энциклопедии. О некоторых из них, а точнее говоря, о некоторых замечательных точках, связанных с треугольником, мы и хотим рассказать.

Поясним сначала смысл выражения «замечательные точки треугольника». Все мы знаем, что биссектрисы внутренних углов треугольника пересекаются в одной точке - центре вписанной в этот треугольник окружности. Точно так же в одной точке пересекают­ся медианы, высоты треугольника, серединные перпендикуляры к его сторонам.

Получающиеся при пересечении перечисленных тро­ек прямых точки, конечно же, замечательны (ведь три прямые, как правило, пересекаются в трех различных точках). Возможны и замечательные точки других типов, например точки, в которых достигает экстремума какая-либо функция, определенная для всех точек треугольника. С другой стороны, понятие «замечательные точки треугольника» следует толковать скорее на литературно-эмоциональном уровне, чем на формально-математическом. Извес­тен софизм, «доказывающий», что все натуральные числа «инте­ресные». (Допустив, что есть «неинтересные» числа, возьмем среди них наименьшее. Бесспорно, это число «интересное»: оно интересно уже тем, что оно наименьшее среди «неинтересных».) Подобное рассуждение, «доказывающее», что все точки треугольника «за­мечательны», можно сконструировать и в нашем случае. Пе­рейдем к рассмотрению некоторых примеров.

ЦЕНТР ОПИСАННОЙ ОКРУЖНОСТИ

Докажем, что существует точка, равноудаленная от вершин треугольника, или, иначе, что существует окружность, проходя­ щая через три вершины треугольника. Геометрическим местом то­чек, равноудаленных от точек А и В, является перпендикуляр к отрезку АВ, проходящий через его середину (серединный перпен­дикуляр к отрезку АВ). Рассмотрим точку О, в которой пересе­каются серединные перпендикуляры к отрезкам АВ и ВС. Точка О равноудалена от точек А и В, а также от точек В и С. Поэтому она равноудалена от точек А и С, т. е. она лежит и на середин­ном перпендикуляре к отрезку АС (рис. 50).

Центр О описанной окружности лежит внутри треугольника, только если этот треугольник остроугольный. Если же треуголь­ник прямоугольный, то точка О совпадает с серединой гипотенузы,

а если угол при вершине С тупой, то прямая АВ разделяет точ­ки О и С.

Если в Δ АВС угол при вершине С острый, то сторона АВ видна из точки О под углом, равным 2<. AOB в два раза больше вписанного < ACB , опирающегося на ту же дугу. Если же <. C тупой, то сторона АВ видна из точ­ки О под углом, равным 360° - 2<С. Воспользовавшись этим, легко доказать теорему синусов: AB =2 Rsin С, где R - радиус описанной окружности Δ АВС. В самом деле, пусть С 1 - середина стороны АВ. Тогда АС 1 = АО sin <. AOC 1 = R sin С, поэтому AB =2 AC 1 =2 R sin С. Теорему синусов можно сформулировать и по-другому: «Проекция диаметра описанной окружности, пер­пендикулярного первой стороне треугольника, на прямую, содер­жащую вторую сторону, равна третьей стороне». Это столь громоздкое утверждение является на самом деле просто теоремой синусов.

В математике часто бывает так, что объекты, определенные совсем по-разному, оказываются совпадающими. Покажем это на примере.

Пусть А 1 , В 1 и C 1 - середины сторон ВС, С А и АВ. Можно до­казать, что окружности, описанные около Δ АВ 1 С 1 , Δ A 1 BC 1 и Δ A 1 B 1 C , пересекаются в одной точке, причем эта точка - центр описанной окружности Δ АВС (рис. 51). Итак, у нас есть две, казалось бы, совсем разные точки: точка пересечения серединных перпендикуляров к сторонам Δ АВС и точка пересечения описан­ных окружностей Δ АВ 1 С 1 , Δ AiBCi и Δ AiBiC . А оказывается, что эти две точки почему-то совпадают!

Проведем, однако, обещанное доказательство. Достаточно до­казать, что центр О описанной окружности Δ АВС лежит на ок­ружностях, описанных около ΔАВ 1 С 1 , Δ А iBCi и Δ A 1 B 1 C . Углы ОВ 1 А и ОС 1 А прямые, поэтому точки В 1 и С 1 лежат на окружности диаметром ОА, а значит, точка О лежит на окружности, описан­ной около Δ AB 1 C 1 . Для Δ AiBCi и Δ А 1 В 1 С доказательство аналогично.

Доказанное утверждение является частным случаем весьма интересной теоремы: если на сторонах АВ, ВС и СА треугольни­ка АВС взяты произвольные точки С 1 , А 1 и В 1 , то описанные окружности Δ АВ 1 С 1 , Δ А 1 ВС 1 и Δ А 1 В 1 С пересекаются в одной точке.

Сделаем последнее замечание по поводу центра описанной окружности. Прямые А 1 В 1 и АВ параллельны, поэтому ОС 1 перпендикулярна А 1 В 1 Аналогично ОВ 1 перпендикулярна A 1 C 1 и ОА 1 перпендикулярна В 1 С 1 , т. е. О - точка пересечения высот треугольника A 1 B 1 С 1 ... Постойте, постойте! Мы пока еще не доказывали, что высоты треугольника пересекаются в одной точке. Нет ли здесь пути к доказательству? К этому разговору мы еще вернемся.

ЦЕНТР ВПИСАННОЙ ОКРУЖНОСТИ

Докажем, что биссектрисы углов Δ АВС пересекаются в од­ной точке. Рассмотрим точку О пересечения биссектрис углов А и В. Любые точки биссектрисы угла A равноудалены от прямых АВ и АС, а любая точка биссектрисы угла B равноудалена от пря­мых АВ и ВС, поэтому точка О равноудалена от прямых АС и ВС, т. е. она лежит на биссектрисе угла C . Точка О равноудалена от прямых АВ, ВС и СА, значит, существует окружность с центром О, касающаяся этих прямых, причем точки касания лежат на самих сторонах, а не на их продолжениях. В самом деле, углы при вершинах А и В Δ АОВ острые, поэтому проекция точки О на пря­мую АВ лежит внутри отрезка АВ. Для сторон ВС и СА дока­зательство аналогично.

Пусть А 1 , В 1 и С 1 - точки касания вписанной окружности тре­угольника со сторонами ВС, СА и АВ (рис. 52). Тогда АВ 1 =АС 1 , BC 1 = BA 1 и СА 1 = СВ 1 . Кроме того, угол B 1 A 1 C 1 равен углам при основании равнобедренного ΔАВ 1 С 1 (по теореме об угле между касательной и хордой) и т. д. Для угла B 1 C 1 A 1 и угла A 1 B 1 C 1 доказа­тельство аналогично.

Углы при основании любого равнобедренного треугольника ост­рые, поэтому Δ А 1 В 1 С 1 остроугольный для любого Δ АВС.

Если x = AB 1 , y = BC 1 и z = CA 1 , то х+у = с, y + z = a и z + x = b , где а, b и с - длины сторон Δ АВС. Складывая первые два равенства и вычитая из них третье, получаем у= (а+с-в)/2 . Ана­логично х=(в+с-а)/2 и z =(а+в-с)/2. Следует отметить, что для четырехугольника подобные рассуждения не привели бы к желаемо­му результату, потому что соответствующая система уравнений

либо вообще не имеет решений, либо имеет их бесконечно много. В самом деле, если х+у=а, y + z = b , z + t = c и t + x = d , то у=а -х, z = b -y = b - а+х и t = c - b + a -х, а из равенства t + x = d следует, что a + c = b + d . Поэтому если а+с не равно в+ d , то система решений не имеет, а если a + c = b + d , то х можно вы­бирать произвольно, а у, z , t выражаются через х.

Вернемся снова к единственности решения системы уравнений для треугольника. Используя ее, можно доказать следующее ут­верждение: пусть окружности с центрами А, В и С касаются внеш­ним образом в точках А 1 , В 1 и С 1 (рис. 53). Тогда описанная окружность Δ A 1 B 1 C 1 вписана в Δ АВС. В самом деле, если х, у и z - радиусы окружностей; a , b и с - длины сторон ΔАВС, то х+у = с, y + z = a , y + x = b .

Докажем три свойства центра О вписанной окружности Δ ABC .

1. Если продолжение биссектрисы угла С пересекает описан­ную окружность Δ АВС в точке М, то МА=МВ=МО (рис. 54).

Докажем, например, что в Δ АМО равны углы при вершинах А и О. В самом деле, <OAM = < OAB + < BAM и < AOM =< OAC +<А CO , < ОАВ=<ОАС и < ВАМ=<ВСМ = < ACO . Следовательно, АМ=МО. Аналогично ВМ=МО.

2. Если АВ - основание равнобедренного Δ АВС, то окруж­ность, касающаяся сторон <ACB в точках А и В, проходит через точку О (рис. 55).

Пусть О" - середина (меньшей) дуги АВ рассматриваемой окружности. По свойству угла между касательной и хордой <CAO "= <О"ВА= <О"АВ, т. е. точка О" лежит на биссектрисе < A . Аналогично можно показать, что она лежит и на биссектрисе < B , т. е. О" = О.

3. Если прямая, проходящая через точку О параллельно сто­роне АВ, пересекает стороны ВС и СА в точках А 1 и В 1 , то A 1 B 1 = A 1 B + AB 1 .

Докажем, что Δ AB 1 O равнобедренный. В самом деле, < B 1 OA = < OAB = < B 1 AO (рис. 56). Поэтому AB 1 = B 1 0. Ана­логично A 1 B = A 1 O , а значит, A 1 B 1 = A 1 О+ OB 1 = A 1 B + AB 1 .

Пусть в Δ АВС углы при вершинах А, В и С равны α, β, γ. Вычислим величину угла, под которым сторона АВ видна из точ­ки О. Так как углы Δ АО В при вершинах А и В равны α/2 и β/2, то

< AOB = 180°- (α+β)/2=180°- (180°- γ)/2=90° +γ/2. Эта

формула бывает полезна при решении многих задач.

Выясним, например, в каком случае четырехугольник, образо­ванный сторонами АС и ВС и биссектрисами АА 1 и ВВ 1 , являет­ся вписанным. Четырехугольник OA 1 CB 1 вписанный тогда и толь­ко тогда, когда < A 1 CB 1 +

γ+(90° +γ/2) =180°, а значит, γ = 60°. В этом случае хорды OA 1

и ОВ 1 описанной окружности четырехугольника ОА 1 СВ 1 равны, так как на них опираются равные углы OCA 1 и ОСВ 1 .

Вписанная окружность Δ АВС касается его сторон во внут­ренних точках. Выясним, какие вообще бывают окружности, касающиеся трех прямых АВ, ВС и СА. Центр окружности, ка­сающейся двух пересекающихся прямых, лежит на одной из двух прямых, делящих пополам углы между исходными прямыми. Поэтому центры окружностей, касающихся прямых АВ, ВС и С А, лежат на биссектрисах внешних или внутренних углов треугольни­ка (или же их продолжениях). Через точку пересечения любых двух биссектрис внешних углов проходит биссектриса внутреннего угла. Доказательство этого утверждения дословно повторяет дока­зательство соответствующего утверждения для биссектрис внут­ренних углов. В итоге получаем 4 окружности с центрами О, О а , Оь и О с (рис. 57). Окружность с центром О а касается стороны ВС и

продолжений сторон АВ и АС; эта окружность называется вневписанной окружностью Δ АВС. Радиус вписанной окружности треугольника обычно обозначается через г, а радиусы вневписанных окружностей - через г а , г ь и г с . Между радиусами вписанной и вневписанной окружностей имеют место следующие соотношения:

г / г с =(р-с)/р и г г с =(р - а) (р -в), где р - полупериметр Δ АВС. Докажем это. Пусть К и L - точки касания вписанной и вневписанной окружностей с прямой ВС (рис. 58). Прямоугольные треугольники СОК и CO c L подобны, поэтому

г/ г с =ОК/О с L = CK / CL .. Ранее было доказано, что СК = (а+в-с)/2=р-с.

Остается проверить, что CL = p .

Пусть М и Р - точки касания вневписанной окружности с прямыми АВ и АС. Тогда

CL= (CL+CP)/ 2 = (CB+BL+CA+AP)/2 = (CB+BM + CA+AM)/2 = р

Для доказательства соотношения rr c =(p - a )(p - b ) рассмот­рим прямоугольные треугольники LO C B и КВО, которые подобны, так как

<OBK +< O C BL =(<СВА + <АВ L )/2=90°.

Значит, L О с /ВL =BK /KO , т. е. rr c = KO · LO c = BK · BL . Остается за­метить, что ВК=(a + c - b )/2= p - b и BL = CL - CB = p - a .

Отметим еще одно интересное свойство (попутно уже факти­чески доказанное). Пусть вписанная и вневписанная окружности касаются стороны АВ в точках N и М (рис. 58). Тогда AM = BN . В самом деле, BN = p - b и АМ=АР=СР-АС=р - в.

Соотношения rr c =(p - а)(p ) и r р= r с -с) можно исполь­зовать для вывода формулы Герона S 2 = p (p - a )(p - b )(p - c ), где S - площадь треугольника. Перемножая эти соотношения, по­лучаем r 2 p =(p - a )(p - b )(p - c ). Остается проверить, что S = pr . Это легко сделать, разрезав ΔАВС на ΔАОВ, ΔВОС и ΔСОА.

ТОЧКА ПЕРЕСЕЧЕНИЯ МЕДИАН

Докажем, что медианы треугольника пересекаются в одной точ­ке. Рассмотрим для этого точку М, в которой пересекаются медиа­ны АА 1 и ВВ 1 . Проведем в ΔВВ1С среднюю линию A 1 A 2 , парал­лельную ВВ 1 (рис. 59). Тогда A 1 M : AM = B 1 A 2 : AB 1 = B 1 A 2 : B 1 C = BA 1 :ВС=1:2, т. е. точка пересечения медиан ВВ 1 и АА 1 делит медиану АА 1 в отношении 1:2. Аналогично точка пересечения ме­диан СС 1 и АА 1 делит медиану АА 1 в отношении 1:2. Следователь­но, точка пересечения медиан АА 1 и ВВ 1 совпадает с точкой пере­сечения медиан АА 1 и СС 1 .

Если точку пересечения медиан треугольника соединить с вер­шинами, то треугольник разобьется на три треугольника равной площади. В самом деле, достаточно доказать, что если Р - любая точка медианы АА 1 в АВС, то площади ΔАВР и ΔАСР равны. Ведь медианы АА 1 и РА 1 в Δ АВС и ΔРВС разрезают их на тре­угольники равной площади.

Справедливо также и обратное утверждение: если для некото­рой точки Р, лежащей внутри Δ АВС, площади ΔАВР, Δ ВСР и ΔСАР равны, то Р - точка пересечения медиан. В самом деле, из равенства площадей ΔАВР и ΔВСР следует, что расстояния от точек А и С до прямой ВР равны, а значит, ВР проходит через середину отрезка АС. Для АР и СР доказательство аналогично.

Равенство площадей треугольников, на которые медианы раз­бивают треугольник, позволяет следующим образом найти отно­шение площади s треугольника, составленного из медиан ΔАВС, к площади S самого ΔАВС. Пусть М - точка пересечения медиан ΔАВС; точка А" симметрична А относительно точки М (рис. 60)

С одной стороны, площадь ΔА"МС равна S /3. С другой стороны, этот треугольник составлен из отрезков, длина каждого из которых равна 2/3 длины соответствующей медианы, поэтому его площадь

равна (2/3) 2 s = 4s /9. Следовательно, s =3 S /4.

Весьма важным свойством точки пересечения медиан является то, что сумма трех векторов, идущих из нее в вершины треугольника, равна нулю. Заметим сначала, что АМ=1/3 (АВ+АС) , где М - точка пересечения медиан Δ ABC . В самом деле, если

ABA - параллелограмм, то АА"=АВ+АС и АМ=1/3АА". Поэтому МА+МВ+МС=1/3(ВА+СА+АВ + СВ + АС + ВС) = 0.

Ясно также, что этим свойством обладает только точка пересече­ния медиан, так как если X - любая другая точка, то

ХА+ХВ+ХС=(ХМ+МА)+(ХМ+МВ)+(ХМ+МС)=3ХМ..

Воспользовавшись этим свойством точки пересечения медиан треугольника, можно доказать следующее утверждение: точка пе­ресечения медиан треугольника с вершинами в серединах сторон АВ, CD и EF шестиугольника ABCDEF совпадает с точкой пере­сечения медиан треугольника с вершинами в серединах сторон ВС, DE и FA . В самом деле, воспользовавшись тем, что если, например, Р - середина отрезка АВ, то для любой точки X спра­ведливо равенство ХА+ ХВ=2ХР, легко доказать, что точки пере­сечения медиан обоих рассматриваемых треугольников обладают тем свойством, что сумма векторов, идущих из них в вершины шестиугольника, равна нулю. Следовательно, эти точки совпадают.

Точка пересечения медиан обладает одним свойством, резко выделяющим ее на фоне остальных замечательных точек тре­угольника: если ΔА"В"С" является проекцией ΔАВС на плос­кость, то точка пересечения медиан Δ А "В"С " является проекцией точки пересечения медиан ΔАВС на ту же плоскость. Это легко следует из того, что при проектировании середина отрезка пере­ходит в середину его проекции, а значит, медиана треугольника переходит в медиану его проекции. Ни биссектриса, ни высота таким свойством не обладают.

Нельзя не отметить, что точка пересечения медиан треугольни­ка является его центром масс, причем как центром масс системы трех материальных точек с равными массами, находящихся в вер­шинах треугольника, так и центром масс пластинки, имеющей форму данного треугольника. Положением равновесия треуголь­ника, шарнирно закрепленного в произвольной точке X , будет та­кое положение, при котором луч ХМ направлен к центру Земли. Для треугольника, шарнирно закрепленного в точке пересечения медиан, любое положение является положением равновесия. Кро­ме того, треугольник, точка пересечения медиан которого опира­ется на острие иглы, также будет находиться в положении равно­весия.

ТОЧКА ПЕРЕСЕЧЕНИЯ ВЫСОТ

Чтобы доказать, что высоты ΔАВС пересекаются в одной точке, вспомним путь доказательства, наметившийся в конце раздела «Центр описанной окружности». Проведем через вершины А, В и С прямые, параллельные противоположным сторонам; эти прямые образуют ΔА 1 В 1 С 1 (рис. 61). Высоты ΔАВС являют­ ся серединными перпендикулярами к сторонам ΔA 1 B 1 C 1 . Следо­вательно, они пересекаются в одной точке - центре описанной окружности ΔA 1 B 1 C 1 . Точка пересечения высот треугольника на­зывается иногда его ортоцентром.

-

Легко проверить, что если Н - точка пересечения высот ΔАВС, то А, В и С - точки пересечения высот ΔВНС, ΔСНА и Δ АНВ соответственно.

Ясно также, что <ABC + < AHC = 180°, потому что < BA 1 H = < BC 1 H =90° (A 1 и C 1 - основания высот). Если точка H 1 сим­метрична точке Н относительно прямой АС, то четырехуголь­ник АВСН 1 вписанный. Следовательно, радиусы описанных ок­ружностей Δ АВС и Δ АН С равны и эти окружности симметричны относительно стороны АС (рис. 62). Теперь легко доказать, что

АН=а |ctg А|, где а=ВС. Всамомделе,

AH=2R sin < ACH=2R |cos A| =a |ctg А| .

Предположим для простоты, что ΔАВС остроугольный и рас­смотрим ΔA 1 B 1 C 1 , образованный основаниями его высот. Оказы­вается, что центром вписанной окружности ΔA 1 B 1 C 1 является точка пересечения высот ΔАВС, а центры вневписанных окружностей

ΔA 1 B 1 C 1 являются вершинами Δ АВС (рис. 63). Точки А 1 и В 1 СН (так как углы НВ 1 С и НА 1 С прямые), поэтому < HA 1 B 1 = < HCB 1 . Аналогично <HA 1 C 1 = < HBC 1 . А так как <HCB 1 = =< HBC 1 то А 1 А - бис­сектриса <В 1 А 1 С 1 .

Пусть Н - точка пересечения высот АА 1 , ВВ 1 и CC 1 тре­угольника ABC . Точки A 1 и В 1 лежат на окружности с диамет­ром АВ, поэтому AH · A 1 H = BH · B 1 H . Аналогично ВН B 1 H =СН ·С 1 Н.

Для остроугольного треугольника справедливо также обратное утверждение: если точки А 1 , B 1 и C 1 лежат на сторонах ВС, СА и АВ остроугольного Δ АВС и отрезки АА 1 , ВВ 1 и СС 1 пересекаются в точке Р, причем АР·А 1 Р=ВР·В 1 Р=СР·С 1 Р, то Р - точка пе­ресечения высот. В самом деле, из равенства

AP ·A 1 P =BP ·B 1 P

следует, что точки А, В, А 1 и В 1 лежат на одной окружности с диаметром АВ, а значит, < AB 1 B = < BA 1 A =γ. Аналогично < ACiC =< CAiA = β и <СВ 1 В= <ВС 1 С= α (рис. 64). Ясно так­же, что α + β= CC 1 A = l 80°, β +γ=180° и γ + α = 180°. Следовательно, α = β=γ=90°.

Точку пересечения высот треугольника можно определить еще ж другим весьма интересным способом, но для этого нам потребу­ются понятия вектора и скалярного произведения векторов.

Пусть О - центр описанной окружности Δ АВС. Сумма векторов О А + OB + ОС является некоторым вектором, поэтому сущест­вует такая точка Р, что ОР = ОА + ОВ+ОС. Оказывается, что Р - точка пересечения высот ΔАВС!

Докажем, например, что AP перпендикулярно BC . Ясно, что АР=АО+

+ор=ао+(оа+ов+ос)=ов+ос и вс= -ов+ос. По­этому скалярное произведение векторов АР и ВС равно ОС 2 - OB 2 = R 2 - R 2 =0, т. е. эти векторы перпендикулярны.

Это свойство ортоцентра треугольника позволяет, доказывать некоторые далеко не очевидные утверждения. Рассмотрим, напри­мер, четырехугольник ABCD , вписанный в окружность. Пусть На, Нв, Нс и H d - ортоцентры Δ BCD , Δ CDA , Δ DAB и Δ ABC соответственно. Тогда середины отрезков АН а , ВНь, СН С , DH d совпадают. В самом деле, если О - центр окружности, а М - се­редина отрезка АН а , то ОМ=1/2(0А + ОН а )= =1/2(ОА + ОВ+ОС+О D ) . Для середин трех других отрезков получаем точно такие же выражения.

ПРЯМАЯ ЭЙЛЕРА

Самым удивительным свойством замечательных точек тре­ угольника является то, что некоторые из них связаны друг с дру­ гом определенными соотношениями. Например, точка пересечения медиан М, точка пересечения высот Н и центр описанной окруж­ ности О лежат на одной прямой, причем точка М делит отре­ зок ОН так, что справедливо соотношение ОМ:МН= 1:2. Эта теорема была доказана в 1765 г. Леонардом Эйлером, который своей неутомимой деятельностью значительно развил многие об­ласти математики и заложил основы многих новых ее разделов. Он родился в 1707 г. в Швейцарии. В 20 лет Эйлер по рекомендации братьев Бернулли получил приглашение приехать в Санкт-Петер­ бург, где незадолго перед этим была организована академия. В конце 1740 г. в России в связи с приходом к власти Анны Леополь­ довны сложилась тревожная обстановка, и Эйлер переехал в Берлин. Через 25 лет он снова вернулся в Россию, в общей слож­ ности в Петербурге Эйлер прожил более 30 лет. Находясь в Берли­ не, Эйлер поддерживал тесную связь с русской академией и был ее почетным членом. Из Берлина Эйлер переписывался с Ломоно­ совым. Их переписка завязалась следующим образом. В 1747 г. Ломоносова избрали в профессоры, т. е. в действительные члены академии; императрица это избрание утвердила. После этого реакционный чиновник академии Шумахер, яро ненавидящий Ло­ моносова, послал его работы Эйлеру, надеясь получить о них плохой отзыв. (Эйлер был старше Ломоносова всего на 4 года, но его научный авторитет был к тому времени уже очень высок.) В своем отзыве Эйлер писал: «Все сии сочинения не токмо хоро­ ши, но и превосходны, ибо он изъясняет физические и химические материи самые нужные и трудные, кои совсем неизвестны и невозможны были к истолкова­ нию самым остроумным и уче­ ным людям, с таким основатель ством, что я совсем уверен о точности его доказательств... Желать надобно, чтобы все про­ чие академии были в состоянии показать такие изобретения, ко­ торые показал господин Ломо­ носов».

Перейдем к доказательству теоремы Эйлера. Рассмотрим Δ A 1 B 1 C 1 с вершинами в ­ серединах сторон Δ АВС; пусть H 1 и Н - их ортоцентры (рис. 65). Точка Н 1 совпадает с центром О описанной окружности ΔАВС. Докажем, что Δ C 1 H 1 M CHM . В самом деле, по свойству точки пересечения медиан С 1 М : СМ= 1:2, коэффициент подобия ΔA 1 B 1 C 1 и ΔАВС равен 2, поэтому C 1 H 1 : CH =1:2, кроме того, <H 1 C 1 M =<НСМ (C 1 H 1 || CH ). Сле­довательно, < C 1 MH 1 = < СМН, а значит, точка М лежит на отрезке H 1 H . Кроме того, H 1 M : MH =1:2, так как коэффициент подобия ΔC 1 H 1 M и Δ СНМ равен 2.

ОКРУЖНОСТЬ ДЕВЯТИ ТОЧЕК

В 1765 г. Эйлер обнаружил, что середины сторон треугольника и основания его высот лежат на одной окружности. Докажем и мы это свойство треугольника.

Пусть В 2 - основание высоты, опущенной из вершины В на
сторону АС. Точки В и В 2 симметричны относительно прямой А 1 С 1
(рис. 66). Следовательно, ΔА 1 В 2 С 1 = Δ A 1 BC t = Δ A 1 B 1 C 1 , поэтому < A 1 B 2 C 1 = <А 1 В 1 С 1 , а значит, точка В 2 лежит на описанной
окружности ΔА 1 В 1 С 1 . Для остальных оснований высот доказа­тельство аналогично. „

Впоследствии было обнаружено, что на той же окружности ле­жат еще три точки - середины отрезков, соединяющих ортоцентр с вершинами треугольника. Это и есть окружность девяти точек.

Пусть Аз и Сз - середины отрезков АН и СН, С 2 - основа­ние высоты, опущенной из вершины С на АВ (рис. 67). Дока­жем сначала, что A 1 C 1 A 3 C 3 - прямоугольник. Это легко следует из того, что А 1 Сз и A 3 C 1 - средние линии ΔВСН и ΔАВН, а A 1 C 1 и А 3 Сз - средние линии ΔАВС и ΔАСН. Поэтому точки А 1 и Аз лежат на окружности с диаметром С 1 Сз, а так как Аз и Сз лежат на окружности, проходящей через точки А 1, C 1 и С 2 . Эта окружность совпадает с окружностью, рассмотренной Эйлером (если Δ АВС не равнобедренный). Для точки Вз доказа­тельство аналогично.

ТОЧКА ТОРРИЧЕЛЛИ

Внутри произвольного четырехугольника ABCD легко найти точку, сумма расстояний от которой до вершин имеет наимень­шее значение. Такой точкой является точка О пересечения его диагоналей. В самом деле, если X - любая другая точка, то АХ+ХС≥АС=АО+ОС и BX + XD BD = BO + OD , причем хотя бы одно из неравенств строгое. Для треугольника аналогичная задача решается сложнее, к ее решению мы сейчас перейдем. Для простоты разберем случай остроугольного треугольника.

Пусть М - некоторая точка внутри остроугольного Δ АВС. Повернем Δ АВС вместе с точкой М на 60° вокруг точки А (рис. 68). (Точнее говоря, пусть В",С и М" - образы точек В, С и М при повороте на 60° вокруг точки А.) Тогда АМ+ВМ+СМ=ММ"+ BM + C " M ", АМ=ММ", так как ΔАММ" - равнобедренный (АМ=АМ") и <МАМ" = 60°. Правая часть равенства - это длина ломаной ВММ"С " ; она будет наименьшей, когда эта ломаная

совпадает с отрезком ВС " . В этом случае <. AMB = 180° - <АММ" = 120° и <АМС = <AM " C - 180°- <AM " M = 120°, т. е. стороны АВ, ВС и СА видны из точки М под углом 120°. Такая точка М называется точкой Торричелли треугольника ABC .

Докажем, впрочем, что внутри остроугольного треугольника всегда существует точка М, из которой каждая сторона видна под утлом 120°. Построим на стороне АВ треугольника ABC внешним образом правильный ΔАВС 1 (рис. 69). Пусть М -точка пересе­чения описанной окружности ΔАВС 1 и прямой СС 1 . Тогда ABC 1 =60° и АВС видны из точки М под углом 120°. Продолжая эти рассуждения немножко дальше, можно получить еще одно опреде­ление точки Торричелли. Построим правильные треугольни­ки А 1 ВС и АВ 1 С еще и на сторонах ВС и АС. Докажем, что точка М лежит также и на прямой АА 1 . В самом деле, точка М лежит на описанной окружности ΔA 1 BC , поэтому <A 1 MB = < A 1 CB = 60°, а значит, <А 1 МВ+ <. BMA = 180°. Аналогично точка М лежит и на прямой ВВ 1 (рис. 69).

Внутри ΔАВС существует единственная точка М, из которой его стороны видны под углом 120°, потому что описанные окруж­ности ΔABC 1 , Δ AB i C и Δ А 1 ВС не могут иметь более одной об­щей точки.

Приведем теперь физическую (механическую) интерпретацию точки Торричелли. Закрепим в вершинах ΔАВС колечки, про­пустим сквозь них три веревки, одни концы которых связаны, а к другим концам прикреплены грузы равной массы (рис. 70). Ес­ли х = МА, у = МВ, z = MC и а - длина каждой нити, то потенци­альная энергия рассматриваемой системы равна mg (x )+ mg (y - a )+ mg (z --а). В положении равновесия потенциальная энергия имеет наименьшее значение, поэтому сумма х+у+z тоже имеет наименьшее значение. С другой стороны, в положении равновесия равнодействующая сил в точке М равна нулю. Силы эти по абсолютной величине равны, поэтому попарные углы между векторами сил равны 120°.

Остается рассказать, как обстоят дела в случае тупоугольно­го треугольника. Если тупой угол меньше 120°, то все предыдущие рассуждения остаются в силе. А если тупой угол больше или равен 120°, то сумма расстояний от точки треугольника до его вершин будет наименьшей, когда эта точка - вершина тупого угла.

ТОЧКИ БРОКАРА

Точками Брокара Δ АВС называются такие его внутренние точки Р и Q , что <ABP = <. BCP =< CAP и <. QAB = <. QBC = < QCA (для равностороннего треугольника точки Брокара сли­ваются в одну точку). Докажем, что внутри любого ΔАВС сущест­вует точка Р, обладающая требуемым свойством (для точки Q до­казательство аналогично). Предварительно сформулируем опреде­ление точки Брокара в другом виде. Обозначим величины углов так, как показано на рисунке 71. Поскольку <АРВ=180° - а+ х-у, равенство х=у эквивалентно равенству <APB =180°-< . A . Следовательно, Р - точка Δ АВС, из которой стороны АВ,
ВС и СА видны под углами 180°-<. A , 180°- <B , 180°-<С.
Такую точку можно построить следующим образом. Построим на
стороне ВС треугольника АВС подобный ему треугольник СА1В
так, как показано на рисунке 72. Докажем, что точка Р пересече­ния прямой АА1 и описанной окружности ΔА1ВС искомая. В са­мом деле, <BPC =18 O ° - β и <APB = 180°- <A t PB = 180° -<A 1 CB = l 80° - а. Построим далее аналогичным образом по­добные треугольники на сторонах АС и АВ (рис. 73). Так как <. APB = 180° - а, точка Р лежит также и на описанной окружности ΔАВС 1 Следовательно, <BPC 1 = <BAC 1 = β, а значит, точка
Р лежит на отрезке СС 1 . Аналогично она лежит и на отрезке ВВ 1 ,
т. е. Р - точка пересечения отрезков АА 1 , ВВ 1 и СС 1 .

Точка Брокара Р обладает следующим интересным свойством. Пусть прямые АР, ВР и СР пересекают описанную окружность ΔАВС

в точках А 1 , В 1 и C 1 (рис. 74). Тогда ΔАВС = Δ B 1 С 1 A 1 самом деле, <. A 1 B 1 C 1 = < A 1 B 1 B + < BB 1 C 1 = <A 1 AB +<В CC 1 = <A 1 AB + +< A 1 AC =<.ВАС, по свойству точки Брокарa ΔАВС углы BCC 1 и А 1 АС равны, а значит, A 1 C 1 = BC . Равенство остальных сторон ΔАВС и Δ В 1 С 1 А 1 проверяется аналогично.

Во всех рассмотренных нами случаях доказательство того, что соответствующие тройки прямых пересекаются в одной точке, можно провести с помощью теоремы Чевы. Мы сформулируем эту теорему.

Теорема . Пусть на сторонах АВ, ВС и С А треугольника ABC взяты точки С 1 , А 1 и В 1 соответственно. Прямые АА 1 , ВВ 1 и СС 1 пересекаются в одной точке тогда и только тогда, когда

АС 1 /С 1 В·ВА 1 /А 1 С·СВ 1 / В 1 А = 1.

Доказательство теоремы приведено в учебнике геометрии 7-9 класс Л.С.Атанасяна на с.300.

Литература.

1.Атанасян Л.С. Геометрия 7-9.- М.:Просвещение, 2000г.

2.Киселев А.П. Элементарная геометрия.- М.:Просвещение, 1980г.

3.Никольская И.Л. Факультативный курс по математике. М.:Просвещение, 1991г.

4. Энциклопедический словарь юного математика.. Сост. А.П.Савин.-.М.:Педагогика, 1989.

Введение

Предметы окружающего нас мира обладают определенными свойствами, изучением которых занимаются различные науки.

Геометрия - это раздел математики, который рассматривает различные фигуры и их свойства, своими корнями уходит в далёкое прошлое.

В четвертой книге «Начал» Евклид решает задачу: «Вписать круг в данный треугольник». Из решения вытекает, что три биссектрисы внутренних углов треугольника пересекаются в одной точке - центре вписанного круга. Из решения другой задачи Евклида вытекает, что перпендикуляры, восстановленные к сторонам треугольника в их серединах, тоже пересекаются в одной точке - центре описанного круга. В «Началах» не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром (греческое слово «ортос» означает «прямой», «правильный»). Это предложение было, однако, известно Архимеду. Четвертой особенной точкой треугольника является точка пересечения медиан. Архимед доказал, что она является центром тяжести (барицентром) треугольника.

На вышеназванные четыре точки было обращено особое внимание, и начиная с XVIII века они были названы «замечательными» или «особенными» точками треугольника. Исследование свойств треугольника, связанных с этими и другими точками, послужило началом для создания новой ветви элементарной математики – «геометрии треугольника» или «новой геометрии треугольника», одним из родоначальников которой стал Леонард Эйлер.

В 1765 году Эйлер доказал, что в любом треугольнике ортоцентр, барицентр и центр описанной окружности лежат на одной прямой, названной позже «прямой Эйлера». В двадцатых годах XIX века французские математики Ж. Понселе, Ш. Брианшон и другие установили независимо друг от друга следующую теорему: основания медиан, основания высот и середины отрезков высот, соединяющих ортоцентр с вершинами треугольника, лежат на одной и той же окружности. Эта окружность называется «окружностью девяти точек», или «окружностью Фейербаха», или «окружностью Эйлера». К. Фейербах установил, что центр этой окружности лежит на прямой Эйлера.

«Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг - геометрия». Эти слова, сказанные великим французским архитектором Ле Корбюзье в начале XX века, очень точно характеризуют и наше время. Мир, в котором мы живем, наполнен геометрией домов и улиц, гор и полей, творениями природы и человека.

Нас заинтересовали так называемые «замечательные точки треугольника».

После прочтения литературы по данной теме, мы зафиксировали для себя определения и свойства замечательных точек треугольника. Но на этом наша работа не закончилась, и нам захотелось самим исследовать эти точки.

Поэтому цель данной работы – изучение некоторых замечательных точек и линий треугольника, применение полученных знаний к решению задач. В процессе достижения поставленной цели можно выделить следующие этапы:

    Подбор и изучение учебного материала из различных источников информации, литературы;

    Изучение основных свойств замечательных точек и линий треугольника;

    Обобщение этих свойств и доказательство необходимых теорем;

    Решение задач, связанных с замечательными точками треугольника.

Глава I . Замечательные точки и линии треугольника

1.1 Точка пересечения серединных перпендикуляров к сторонам треугольника

Серединный перпендикуляр – это прямая, проходящая через середину отрезка, перпендикулярно к нему. Нам уже известна теорема, характеризующая свойство серединного перпендикуляра: каждая точка серединного перпендикуляра к отрезку равноудалена от его концов и обратно, если точка равноудалена от концов отрезка, то она лежит на серединном перпендикуляре.

Многоугольник называется вписанным в окружность, если все его вершины принадлежат окружности. Окружность при этом называется описанной около многоугольника.

Около всякого треугольника можно описать окружность. Ее центром является точкой пересечения серединных перпендикуляров к сторонам треугольника.

Пусть точка О – точка пересечения серединных перпендикуляров к сторонам треугольника АВ и ВС.

Вывод: таким образом, если точка О- точка пересечения серединных перпендикуляров к сторонам треугольника, то ОА=ОС=ОВ, т.е. точка О равноудалена от всех вершин треугольника АВС, значит, она является центром описанной окружности.

остроугольный

тупоугольный

прямоугольный

Следствия

sin γ = c/2R = с/sin γ =2R.

Аналогично доказывается а / sin α =2R, b/ sin β =2R.

Таким образом:

Это свойство называют теоремой синусов.

В математике часто бывает, что объекты, определенные совсем по- разному, оказываются совпадающими.

Пример. Пусть А1, В1, С1 – середины сторон ∆АВС ВС, АС, АВ соответственно. Показать, что окружности, описанные около треугольников АВ1С1, А1В1С, А1ВС1 пересекаются в одной точке. Причем эта точка центр описанной около ∆АВС окружности.

    Рассмотрим отрезок АО и построим на этом отрезке, как на диаметре, окружность. На эту окружность попадают точки С1и В1, т.к. являются вершинами прямых углов, опирающихся на АО. Точки А, С1, В1 лежат на окружности =эта окружность описана около ∆АВ1С1.

    Аналогично проведем отрезок ВО и построим на этом отрезке, как на диаметре, окружность. Это будет окружность, описанная около ∆ВС1 А1.

    Проведем отрезок СО и построим на этом отрезке, как на диаметре, окружность. Это будет окружность, описанная около

    Эти три окружности проходят через точку О - центр описанной около ∆АВС окружности.

Обобщение. Если на сторонах∆АВС АС, ВС, АС взять произвольные точки А 1 , В 1 , С 1 , то окружности описанные около треугольников АВ 1 С 1 , А 1 В 1 С, А 1 ВС 1 пересекаются в одной точке.

1.2 Точка пересечения биссектрис треугольника

Верно и обратное утверждение: если точка равноудалена от сторон угла, то она лежит на его биссектрисе.

Полезно отметить половины одного угла одинаковыми буквами:

OAF=OAD= α, OBD=OBE= β, OCE=OCF= γ.

Пусть точка О- точка пересечения биссектрис углов А и В. По свойству точки, лежащей на биссектрисе угла А, OF=OD=r. По свойству точки, лежащей на биссектрисе угла В, OЕ=OD=r. Таким образом, OЕ=OD= OF=r= точка О равноудалена от всех сторон треугольника АВС, т.е. О- центр вписанной окружности. (Точка О – единственная).

Вывод: таким образом, если точка О- точка пересечения биссектрис углов треугольника, то OЕ=OD= OF=r, т.е. точка О равноудалена от всех сторон треугольника АВС, значит, она является центром вписанной окружности. Точка О- пересечения биссектрис углов треугольника – замечательная точка треугольника.

Следствия:

Из равенства треугольников АОF и AOD (рисунок 1) по гипотенузе и острому углу, следует, что AF = AD . Из равенства треугольников OBD и OBE следует, что BD = BE , Из равенства треугольников COE и COF следует, что С F = CE . Таким образом, отрезки касательных, проведенных к окружности из одной точки равны.

AF=AD=z , BD=BE=y , СF=CE=x

а=х+у (1), b = х+ z (2), с= х+у (3).

    + (2) – (3), то получим: а+ b -с= x + y + x + z - z - y = а+ b -с= 2 x =

х= ( b + c - а)/2

Аналогично: (1) +(3) – (2), то получим: у = (а + с – b )/2.

Аналогично: (2) +(3) – (1), то получим: z = (а + b - c )/2.

Биссектриса угла треугольника разбивает противолежащую сторону на отрезки, пропорциональные прилежащим сторонам.

1.3 Точка пересечения медиан треугольника (центроид)

Доказательство 1. Пусть A 1 , B 1 и C 1 -середины сторон BC, CA и AB треугольника ABC соответственно (рис.4).

Пусть G-точка пересечения двух медиан AA 1 и BB 1 . Докажем сначала, что AG:GA 1 = BG:GB 1 = 2.

Для этого возьмем середины P и Q отрезков AG и BG. По теореме о средней линии треугольника отрезки B 1 A 1 и PQ равны половине стороны AB и параллельны ей. Поэтому четырехугольник A 1 B 1 PQ-параллелограмм. Тогда точка G пересечения его диагоналей PA 1 и QB 1 делит каждую из них пополам. Следовательно, точки P и G делят медиану AA 1 на три равные части, а точки Q и G делят медиану BB 1 также на три равные части. Итак, точка G пересечения двух медиан треугольника делит каждую из них в отношении 2:1, считая от вершины.

Точку пересечения медиан треугольника называют центроидом или центром тяжести треугольника. Это название связано с тем, что именно в этой точке находиться центр тяжести однородной треугольной пластины.

1.4 Точка пересечения высот треугольника (ортоцентр)

1.5 Точка Торричелли

Путь дан треугольник ABC. Точкой Торричелли этого треугольника называется такая точка O, из которой стороны данного треугольника видны под углом 120°, т.е. углы AOB, AOC и BOC равны 120°.

Докажем, что в случае, если все углы треугольника меньше 120°, то точка Торричелли существует.

На стороне AB треугольника ABC построим равносторонний треугольник ABC" (рис. 6, а), и опишем около него окружность. Отрезок AB стягивает дугу этой окружности величиной 120°. Следовательно, точки этой дуги, отличные от A и B, обладают тем свойством, что отрезок AB виден из них под углом 120°. Аналогичным образом, на стороне AC треугольника ABC построим равносторонний треугольник ACB" (рис. 6, а), и опишем около него окружность. Точки соответствующей дуги, отличные A и C, обладают тем свойством, что отрезок AC виден из них под углом 120°. В случае, когда углы треугольника меньше 120°, эти дуги пересекаются в некоторой внутренней точке O. В этом случае ∟AOB = 120°, ∟AOC = 120°. Следовательно, и ∟BOC = 120°. Поэтому точка O является искомой.

В случае, когда один из углов треугольника, например ABC, равен 120°, точкой пересечения дуг окружностей будет точка B (рис. 6, б). В этом случае точки Торричелли не существует, так как нельзя говорить об углах, под которыми видны из этой точки стороны AB и BC.

В случае, когда один из углов треугольника, например ABC, больше 120° (рис. 6, в), соответствующие дуги окружностей не пересекаются, и точки Торричелли также не существует.

С точкой Торричелли связана задача Ферма (которую мы рассмотрим во главе II) нахождении точки, сумма расстояний от которой до трех данных точек наименьшая.

1.6 Окружность девяти точек

Действительно, A 3 B 2 – средняя линия треугольника AHC и, следовательно, A 3 B 2 || CC 1 . B 2 A 2 – средняя линия треугольника ABC и, следовательно, B 2 A 2 || AB. Так как CC 1 ┴ AB, то A 3 B 2 A 2 = 90°. Аналогично, A 3 C 2 A 2 = 90°. Поэтому точки A 2 , B 2 , C 2 , A 3 лежат на одной окружности с диаметром A 2 A 3 . Так как AA 1 ┴BC, то точка A 1 также принадлежит этой окружности. Таким образом, точки A 1 и A 3 лежат на окружности, описанной около треугольника A2B2C2. Аналогичным образом показывается, что точки B 1 и B 3 , C 1 и C 3 лежат на этой окружности. Значит, все девять точек лежат на одной окружности.

При этом центр окружности девяти точек лежит посередине между центром пересечения высот и центром описанной окружности. Действительно, пусть в треугольнике ABC (рис. 9), точка O – центр описанной окружности; G – точка пересечения медиан. H точка пересечения высот. Требуется доказать, что точки O, G, H лежат на одной прямой и центр окружности девяти точек N делит отрезок OH пополам.

Рассмотрим гомотетию с центром в точке G и коэффициентом -0,5. Вершины A, B, C треугольника ABC перейдут, соответственно в точки A 2 , B 2 , C 2 . Высоты треугольника ABC перейдут в высоты треугольника A 2 B 2 C 2 и, следовательно, точка H перейдет в точку O. Поэтому точки O, G, H будут лежать на одной прямой.

Покажем, что середина N отрезка OH является центром окружности девяти точек. Действительно, C 1 C 2 – хорда окружности девяти точек. Поэтому серединный перпендикуляр к этой хорде является диаметром и пересекает OH в середине N. Аналогично, серединный перпендикуляр к хорде B 1 B 2 является диаметром и пересекает OH в той же точке N. Значит N – центр окружности девяти точек. Что и требовалось доказать.

Действительно, пусть P – произвольная точка, лежащая на окружности, описанной около треугольника ABC; D, E, F – основания перпендикуляров, опущенных из точки P на стороны треугольника (рис. 10). Покажем, что точки D, E, F лежат на одной прямой.

Заметим, что в случае, если AP проходит через центр окружности, то точки D и E совпадают с вершинами B и C. В противном случае, один из углов ABP или ACP острый, а другой – тупой. Из этого следует, что точки D и E будут расположены по разные стороны от прямой BC и для того, чтобы доказать, что точки D, E и F лежат на одной прямой, достаточно проверить, что ∟CEF =∟BED.

Опишем окружность с диаметром CP. Так как ∟CFP = ∟CEP = 90°, то точки E и F лежат на этой окружности. Поэтому ∟CEF =∟CPF как вписанные углы, опирающиеся на одну дугу окружности. Далее, ∟CPF = 90°- ∟PCF = 90°- ∟DBP = ∟BPD. Опишем окружность с диаметром BP. Так как ∟BEP = ∟BDP = 90°, то точки F и D лежат на этой окружности. Поэтому ∟BPD =∟BED. Следовательно, окончательно получаем, что ∟CEF =∟BED. Значит точки D, E, F лежат на одной прямой.

Глава II Решение задач

Начнем с задач, относящихся к расположению биссектрис, медиан и высот треугольника. Их решение, с одной стороны, позволяет вспомнить пройденный ранее материал, а с другой стороны, развивает необходимые геометрические представления, подготавливает к решению более сложных задач.

Задача 1. По углам A и B треугольника ABC (∟A

Решение. Пусть CD – высота, CE – биссектриса, тогда

∟BCD = 90° - ∟B, ∟BCE = (180° - ∟A - ∟B):2.

Следовательно, ∟DCE =.

Решение. Пусть O – точка пересечения биссектрис треугольника ABC (рис. 1). Воспользуемся тем, что против большей стороны треугольника лежит больший угол. Если AB BC, то ∟A

Решение. Пусть O – точка пересечения высот треугольника ABC (рис. 2). Если AC ∟B. Окружность с диаметром BC пройдет через точки F и G. Учитывая, что из двух хорд меньше та, на которую опирается меньший вписанный угол, получаем, что CG

Доказательство. На сторонах AC и BC треугольника ABC, как на диаметрах, построим окружности. Точки A 1 , B 1 , C 1 принадлежат этим окружностям. Поэтому ∟B 1 C 1 C = ∟B 1 BC, как углы, опирающиеся на одну и ту же дугу окружности. ∟B 1 BC = ∟CAA 1 , как углы с взаимно перпендикулярными сторонами. ∟CAA 1 = ∟CC 1 A 1 , как углы, опирающиеся на одну и ту же дугу окружности. Следовательно, ∟B 1 C 1 C = ∟CC 1 A 1 , т.е. CC 1 является биссектрисой угла B 1 C 1 A 1 . Аналогичным образом показывается, что AA 1 и BB 1 являются биссектрисами углов B 1 A 1 C 1 и A 1 B 1 C 1 .

Рассмотренный треугольник, вершинами которого являются основания высот данного остроугольного треугольника, дает ответ на одну из классических экстремальных задач.

Решение. Пусть ABC – данный остроугольный треугольник. На его сторонах требуется найти такие точки A 1 , B 1 , C 1 , для которых периметр треугольника A 1 B 1 C 1 был бы наименьшим (рис. 4).

Зафиксируем сначала точку C 1 и будем искать точки A 1 и B 1 , для которых периметр треугольника A 1 B 1 C 1 наименьший (при данном положении точки C 1).

Для этого рассмотрим точки D и E симметричные точке C 1 относительно прямых AC и BC. Тогда B 1 C 1 = B 1 D, A 1 C 1 = A 1 E и, следовательно, периметр треугольника A 1 B 1 C 1 будет равен длине ломаной DB 1 A 1 E. Ясно, что длина этой ломаной наименьшая, если точки B 1 , A 1 лежат на прямой DE.

Будем теперь менять положение точки C 1 , и искать такое положение, при котором периметр соответствующего треугольника A 1 B 1 C 1 наименьший.

Так как точка D симметрична C 1 относительно AC, то CD = CC 1 и ACD=ACC 1 . Аналогично, CE=CC 1 и BCE=BCC 1 . Следовательно, треугольник CDE равнобедренный. Его боковая сторона равна CC 1 . Основание DE равно периметру P треугольника A 1 B 1 C 1 . Угол DCE равен удвоенному углу ACB треугольника ABC и, значит, не зависит от положения точки C 1 .

В равнобедренном треугольнике с данным углом при вершине основание тем меньше, чем меньше боковая сторона. Поэтому наименьшее значение периметра P достигается в случае наименьшего значения CC 1 . Это значение принимается в случае, если CC 1 является высотой треугольника ABC. Таким образом, искомой точкой C 1 на стороне AB является основание высоты, проведенной из вершины C.

Заметим, что мы могли бы фиксировать сначала не точку C 1 , а точку A 1 или точку B 1 и получили бы, что A 1 и B 1 являются основаниями соответствующих высот треугольника ABC.

Из этого следует, что искомым треугольником, наименьшего периметра, вписанным в данный остроугольный треугольник ABC является треугольник, вершинами которого служат основания высот треугольника ABC.

Решение. Докажем, что в случае, если углы треугольника меньше 120°, то искомой точкой в задаче Штейнера является точка Торричелли.

Повернем треугольник ABC вокруг вершины C на угол 60°, рис. 7. Получим треугольник A’B’C. Возьмем произвольную точку O в треугольнике ABC . При повороте она перейдет в какую-то точку O’. Треугольник OO’C равносторонний, так как CO = CO’ и ∟OCO’ = 60°, следовательно, OC = OO’. Поэтому сумма длин OA + OB + OC будет равна длине ломаной AO + OO’ + O’B’. Ясно, что наименьшее значение длина этой ломаной принимает в случае, если точки A, O, O’, B’ лежат на одной прямой. Если O – точка Торричелли, то это так. Действительно, ∟AOC = 120°, ∟COO" = 60°. Следовательно, точки A, O, O’ лежат на одной прямой. Аналогично, ∟CO’O = 60°, ∟CO"B" = 120°. Следовательно, точки O, O’, B’ лежат на одной прямой. Значит, все точки A, O, O’, B’ лежат на одной прямой.

Заключение

Геометрия треугольника, наравне с другими разделами элементарной математики, дает возможность почувствовать красоту математики вообще и может стать для кого-то началом пути в «большую науку».

Геометрия - удивительная наука. Ее история насчитывает не одно тысячелетие, но каждая встреча с ней способна одарить и обогатить (как ученика, так и учителя) волнующей новизной маленького открытия, изумляющей радостью творчества. Действительно, любая задача элементарной геометрии является, по существу, теоремой, а ее решение – скромной (а иногда и огромной) математической победой.

Исторически геометрия начиналась с треугольника, поэтому вот уже два с половиной тысячелетия треугольник является символом геометрии. Школьная геометрия только тогда может стать интересной и содержательной, только тогда может стать собственно геометрией, когда в ней появляется глубокое и всестороннее изучение треугольника. Удивительно, но треугольник, несмотря на свою кажущуюся простоту, является неисчерпаемым объектом изучения - никто даже в наше время не осмелится сказать, что изучил и знает все свойства треугольника.

В данной работе были рассмотрены свойства биссектрис, медиан, серединных перпендикуляров и высот треугольника, расширено число замечательных точек и линий треугольника, сформулированы и доказаны теоремы. Решен ряд задач на применение этих теорем.

Представленный материал может быть использован как на основных уроках, так и на факультативных занятиях, также при подготовке к централизованному тестированию и олимпиадам по математике.

Список литературы

    Берже М. Геометрия в двух томах – М: Мир, 1984.

    Киселёв А. П. Элементарная геометрия. – М.: Просвещение, 1980.

    Коксетер Г.С., Грейтцер С.Л. Новые встречи с геометрией. – М.: Наука, 1978.

    Латотин Л.А., Чеботаравский Б.Д. Математика 9. – Минск: Народная асвета, 2014.

    Прасолов В.В. Задачи по планиметрии. – М.: Наука, 1986. – Ч. 1.

    Сканави М. И. Математика. Задачи с решениями. – Ростов-на-Дону: Феникс, 1998.

    Шарыгин И.Ф. Задачи по геометрии: Планиметрия. – М.: Наука, 1986.



Просмотров